bert_uncased_L-2_H-512_A-8_mrpc
This model is a fine-tuned version of google/bert_uncased_L-2_H-512_A-8 on the GLUE MRPC dataset. It achieves the following results on the evaluation set:
- Loss: 0.5133
- Accuracy: 0.7525
- F1: 0.8319
- Combined Score: 0.7922
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 256
- eval_batch_size: 256
- seed: 10
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score |
---|---|---|---|---|---|---|
0.6181 | 1.0 | 15 | 0.5675 | 0.7034 | 0.8158 | 0.7596 |
0.5593 | 2.0 | 30 | 0.5351 | 0.7279 | 0.8257 | 0.7768 |
0.5034 | 3.0 | 45 | 0.5392 | 0.75 | 0.8416 | 0.7958 |
0.4395 | 4.0 | 60 | 0.5133 | 0.7525 | 0.8319 | 0.7922 |
0.3721 | 5.0 | 75 | 0.5677 | 0.7598 | 0.8393 | 0.7996 |
0.3062 | 6.0 | 90 | 0.6190 | 0.7353 | 0.8188 | 0.7770 |
0.2538 | 7.0 | 105 | 0.6957 | 0.7377 | 0.8243 | 0.7810 |
0.191 | 8.0 | 120 | 0.7498 | 0.7230 | 0.8120 | 0.7675 |
0.1475 | 9.0 | 135 | 0.8235 | 0.7451 | 0.8278 | 0.7865 |
Framework versions
- Transformers 4.46.3
- Pytorch 2.2.1+cu118
- Datasets 2.17.0
- Tokenizers 0.20.3
- Downloads last month
- 8
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for gokulsrinivasagan/bert_uncased_L-2_H-512_A-8_mrpc
Base model
google/bert_uncased_L-2_H-512_A-8Dataset used to train gokulsrinivasagan/bert_uncased_L-2_H-512_A-8_mrpc
Evaluation results
- Accuracy on GLUE MRPCself-reported0.752
- F1 on GLUE MRPCself-reported0.832