|
--- |
|
library_name: transformers |
|
language: |
|
- en |
|
license: apache-2.0 |
|
base_model: google/bert_uncased_L-2_H-128_A-2 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- glue |
|
metrics: |
|
- matthews_correlation |
|
- accuracy |
|
model-index: |
|
- name: bert_uncased_L-2_H-128_A-2_cola |
|
results: |
|
- task: |
|
name: Text Classification |
|
type: text-classification |
|
dataset: |
|
name: GLUE COLA |
|
type: glue |
|
args: cola |
|
metrics: |
|
- name: Matthews Correlation |
|
type: matthews_correlation |
|
value: 0.00286100001416597 |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.690316379070282 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# bert_uncased_L-2_H-128_A-2_cola |
|
|
|
This model is a fine-tuned version of [google/bert_uncased_L-2_H-128_A-2](https://huggingface.co/google/bert_uncased_L-2_H-128_A-2) on the GLUE COLA dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.6155 |
|
- Matthews Correlation: 0.0029 |
|
- Accuracy: 0.6903 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 256 |
|
- eval_batch_size: 256 |
|
- seed: 10 |
|
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- num_epochs: 50 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------------------:|:--------:| |
|
| 0.6288 | 1.0 | 34 | 0.6191 | 0.0 | 0.6913 | |
|
| 0.6087 | 2.0 | 68 | 0.6184 | 0.0 | 0.6913 | |
|
| 0.6076 | 3.0 | 102 | 0.6176 | 0.0 | 0.6913 | |
|
| 0.6066 | 4.0 | 136 | 0.6169 | 0.0 | 0.6913 | |
|
| 0.605 | 5.0 | 170 | 0.6170 | 0.0 | 0.6913 | |
|
| 0.6018 | 6.0 | 204 | 0.6164 | 0.0 | 0.6913 | |
|
| 0.5976 | 7.0 | 238 | 0.6163 | 0.0 | 0.6913 | |
|
| 0.5871 | 8.0 | 272 | 0.6159 | 0.0464 | 0.6922 | |
|
| 0.5824 | 9.0 | 306 | 0.6155 | 0.0029 | 0.6903 | |
|
| 0.5711 | 10.0 | 340 | 0.6198 | 0.0198 | 0.6702 | |
|
| 0.5591 | 11.0 | 374 | 0.6221 | 0.0685 | 0.6721 | |
|
| 0.5496 | 12.0 | 408 | 0.6284 | 0.1240 | 0.6702 | |
|
| 0.5397 | 13.0 | 442 | 0.6350 | 0.1096 | 0.6548 | |
|
| 0.529 | 14.0 | 476 | 0.6423 | 0.0951 | 0.6433 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.46.3 |
|
- Pytorch 2.2.1+cu118 |
|
- Datasets 2.17.0 |
|
- Tokenizers 0.20.3 |
|
|