bert_uncased_L-6_H-256_A-4_massive

This model is a fine-tuned version of google/bert_uncased_L-6_H-256_A-4 on the massive dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6810
  • Accuracy: 0.8559

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 33
  • distributed_type: multi-GPU
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy
3.414 1.0 180 2.7276 0.4629
2.4079 2.0 360 1.9650 0.6390
1.8021 3.0 540 1.5333 0.7221
1.4214 4.0 720 1.2586 0.7634
1.1564 5.0 900 1.0714 0.7900
0.966 6.0 1080 0.9539 0.8023
0.8253 7.0 1260 0.8706 0.8165
0.7209 8.0 1440 0.8109 0.8303
0.6401 9.0 1620 0.7647 0.8377
0.5755 10.0 1800 0.7404 0.8411
0.5227 11.0 1980 0.7118 0.8431
0.4854 12.0 2160 0.6995 0.8515
0.4528 13.0 2340 0.6902 0.8544
0.4399 14.0 2520 0.6810 0.8559
0.4285 15.0 2700 0.6820 0.8515

Framework versions

  • Transformers 4.34.0
  • Pytorch 1.14.0a0+410ce96
  • Datasets 2.14.5
  • Tokenizers 0.14.1
Downloads last month
14
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for gokuls/bert_uncased_L-6_H-256_A-4_massive

Finetuned
(2)
this model

Evaluation results