bert_uncased_L-4_H-512_A-8_massive

This model is a fine-tuned version of google/bert_uncased_L-4_H-512_A-8 on the massive dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5260
  • Accuracy: 0.8844

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 33
  • distributed_type: multi-GPU
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.7044 1.0 180 1.5553 0.6901
1.2648 2.0 360 0.9088 0.8082
0.7783 3.0 540 0.6655 0.8539
0.5308 4.0 720 0.5876 0.8578
0.3865 5.0 900 0.5480 0.8716
0.2889 6.0 1080 0.5289 0.8746
0.2207 7.0 1260 0.5367 0.8756
0.1701 8.0 1440 0.5260 0.8844
0.1389 9.0 1620 0.5364 0.8819
0.1076 10.0 1800 0.5423 0.8834
0.0898 11.0 1980 0.5524 0.8795
0.0763 12.0 2160 0.5524 0.8829
0.0633 13.0 2340 0.5643 0.8805
0.0573 14.0 2520 0.5642 0.8819
0.0519 15.0 2700 0.5634 0.8805

Framework versions

  • Transformers 4.34.0
  • Pytorch 1.14.0a0+410ce96
  • Datasets 2.14.5
  • Tokenizers 0.14.1
Downloads last month
139
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for gokuls/bert_uncased_L-4_H-512_A-8_massive

Finetuned
(21)
this model

Evaluation results