FinLoRA: Benchmarking LoRA Methods for Fine-Tuning LLMs on Financial Datasets
Paper
•
2505.19819
•
Published
•
7
This repository contains a Buffet Agent model for a demo use case of FinLoRA: Benchmarking LoRA Methods for Fine-Tuning LLMs on Financial Datasets.
axolotl version: 0.10.0
base_model: meta-llama/Llama-3.1-8B-Instruct
model_type: LlamaForCausalLM
tokenizer_type: AutoTokenizer
gradient_accumulation_steps: 2
micro_batch_size: 8
num_epochs: 4
learning_rate: 0.0001
optimizer: adamw_torch_fused
lr_scheduler: cosine
load_in_8bit: false
load_in_4bit: false
adapter: lora
lora_r: 64
lora_alpha: 16
lora_dropout: 0.05
lora_target_modules:
- q_proj
- k_proj
- v_proj
val_set_size: 0.02
output_dir: /workspace/FinLoRA/lora/axolotl-output/buffett_agent_llama_3_1_8b_8bits_r64_rslora
sequence_len: 4096
gradient_checkpointing: true
logging_steps: 500
warmup_steps: 10
evals_per_epoch: 4
saves_per_epoch: 1
weight_decay: 0.0
special_tokens:
pad_token: <|end_of_text|>
deepspeed: deepspeed_configs/zero1.json
bf16: auto
tf32: false
chat_template: llama3
wandb_name: buffett_agent_llama_3_1_8b_8bits_r64_rslora
This model is a fine-tuned version of meta-llama/Llama-3.1-8B-Instruct on the /workspace/FinLoRA/data/train/warren_buffett_train.jsonl dataset. It achieves the following results on the evaluation set:
More information needed
More information needed
More information needed
The following hyperparameters were used during training:
| Training Loss | Epoch | Step | Validation Loss |
|---|---|---|---|
| No log | 0 | 0 | 2.1664 |
| No log | 0.2512 | 77 | 1.5421 |
| No log | 0.5024 | 154 | 1.4849 |
| No log | 0.7537 | 231 | 1.4618 |
| No log | 1.0033 | 308 | 1.4463 |
| No log | 1.2545 | 385 | 1.4391 |
| No log | 1.5057 | 462 | 1.4351 |
| 1.4756 | 1.7569 | 539 | 1.4292 |
| 1.4756 | 2.0065 | 616 | 1.4233 |
| 1.4756 | 2.2577 | 693 | 1.4196 |
| 1.4756 | 2.5090 | 770 | 1.4142 |
| 1.4756 | 2.7602 | 847 | 1.4103 |
| 1.4756 | 3.0098 | 924 | 1.4092 |
| 1.3755 | 3.2610 | 1001 | 1.4073 |
| 1.3755 | 3.5122 | 1078 | 1.4062 |
| 1.3755 | 3.7635 | 1155 | 1.4060 |
Base model
meta-llama/Llama-3.1-8B