GGUF
conversational

SmolLM3-GGUF

Original model: https://huggingface.co/HuggingFaceTB/SmolLM3-3B

To enable thinking, you need to specify --jinja

Example usage with llama.cpp:

llama-cli -hf ggml-org/SmolLM3-3B-GGUF --jinja

image/png

Table of Contents

  1. Model Summary
  2. Evaluation
  3. Training
  4. Limitations
  5. License

Model Summary

SmolLM3 is a 3B parameter language model designed to push the boundaries of small models. It supports 6 languages, advanced reasoning and long context. SmolLM3 is a fully open model that offers strong performance at the 3B–4B scale.

image/png

The model is a decoder-only transformer using GQA and NoRope, it was pretrained on 11.2T tokens with a staged curriculum of web, code, math and reasoning data. Post-training included midtraining on 140B reasoning tokens followed by supervised fine-tuning and alignment via Anchored Preference Optimization (APO).

Key features

  • Instruct model optimized for hybrid reasoning
  • Fully open model: open weights + full training details including public data mixture and training configs
  • Long context: Trained on 64k context and suppots up to 128k tokens using YARN extrapolation
  • Multilingual: 6 natively supported (English, French, Spanish, German, Italian, and Portuguese)

For more details refer to our blog post: TODO

How to use

The modeling code for SmolLM3 is available in transformers v4.53.0, so make sure to upgrade your transformers version. You can also load the model with the latest vllm which uses transformers as a backend.

pip install -U transformers
from transformers import AutoModelForCausalLM, AutoTokenizer

checkpoint = "HuggingFaceTB/SmolLM3-3B"
device = "cuda" # for GPU usage or "cpu" for CPU usage
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
# for multiple GPUs install accelerate and do `model = AutoModelForCausalLM.from_pretrained(checkpoint, device_map="auto")`
model = AutoModelForCausalLM.from_pretrained(checkpoint).to(device)
inputs = tokenizer.encode("Gravity is", return_tensors="pt").to(device)
outputs = model.generate(inputs)
print(tokenizer.decode(outputs[0]))

For local inference, you can use llama.cpp, ONNX, MLX and MLC. You can find quantized checkpoints in this collection [TODO].

Evaluation

In this section, we report the evaluation results of SmolLM3 base model. All evaluations are zero-shot unless stated otherwise, and we use lighteval to run them. For Ruler 64k evaluation, we apply YaRN to the Qwen models with 32k context to extrapolate the context length.

We highlight the best score in bold and underline the second-best score.

Base Pre-Trained Model

English benchmarks

Note: All evaluations are zero-shot unless stated otherwise.

Category Metric SmolLM3-3B Qwen2.5-3B Llama3-3.2B Qwen3-1.7B-Base Qwen3-4B-Base
Reasoning & Commonsense HellaSwag 76.15 74.19 75.52 60.52 74.37
ARC-CF (Average) 65.61 59.81 58.58 55.88 62.11
Winogrande 58.88 61.41 58.72 57.06 59.59
CommonsenseQA 55.28 49.14 60.60 48.98 52.99
Knowledge & Understanding MMLU-CF (Average) 44.13 42.93 41.32 39.11 47.65
MMLU Pro CF 19.61 16.66 16.42 18.04 24.92
MMLU Pro MCF 32.70 31.32 25.07 30.39 41.07
PIQA 78.89 78.35 78.51 75.35 77.58
OpenBookQA 40.60 40.20 42.00 36.40 42.40
BoolQ 78.99 73.61 75.33 74.46 74.28
Math & Code
Coding & math HumanEval+ 30.48 34.14 25.00 43.29 54.87
MBPP+ 52.91 52.11 38.88 59.25 63.75
MATH (4-shot) 46.10 40.10 7.44 41.64 51.20
GSM8k (5-shot) 67.63 70.13 25.92 65.88 74.14
Long context
Ruler 32k context 76.35 75.93 77.58 70.63 83.98
Ruler 64k context 67.85 64.90 72.93 57.18 60.29

Multilingual benchmarks

Category Metric SmolLM3 3B Base Qwen2.5-3B Llama3.2 3B Qwen3 1.7B Base Qwen3 4B Base
Main supported languages
French MLMM Hellaswag 63.94 57.47 57.66 51.26 61.00
Belebele 51.00 51.55 49.22 49.44 55.00
Global MMLU (CF) 38.37 34.22 33.71 34.94 41.80
Flores-200 (5-shot) 62.85 61.38 62.89<u/u> 58.68 65.76
Spanish MLMM Hellaswag 65.85 58.25 59.39 52.40 61.85
Belebele 47.00 48.88 47.00 47.56 50.33
Global MMLU (CF) 38.51 35.84 35.60 34.79 41.22
Flores-200 (5-shot) 48.25 50.00 44.45 46.93 50.16
German MLMM Hellaswag 59.56 49.99 53.19 46.10 56.43
Belebele 48.44 47.88 46.22 48.00 53.44
Global MMLU (CF) 35.10 33.19 32.60 32.73 38.70
Flores-200 (5-shot) 56.60 50.63 54.95 52.58 50.48
Italian MLMM Hellaswag 62.49 53.21 54.96 48.72 58.76
Belebele 46.44 44.77 43.88 44.00 48.78
Global MMLU (CF) 36.99 33.91 32.79 35.37 39.26
Flores-200 (5-shot) 52.65 54.87 48.83 48.37 49.11
Portuguese MLMM Hellaswag 63.22 57.38 56.84 50.73 59.89
Belebele 47.67 49.22 45.00 44.00 50.00
Global MMLU (CF) 36.88 34.72 33.05 35.26 40.66
Flores-200 (5-shot) 60.93 57.68 54.28 56.58 63.43

The model has also been trained on Arabic (standard), Chinese and Russian data, but has seen fewer tokens in these languages compared to the 6 above. We report the performance on these langages for information.

Category Metric SmolLM3 3B Base Qwen2.5-3B Llama3.2 3B Qwen3 1.7B Base Qwen3 4B Base
Other supported languages
Arabic Belebele 40.22 44.22 45.33 42.33 51.78
Global MMLU (CF) 28.57 28.81 27.67 29.37 31.85
Flores-200 (5-shot) 40.22 39.44 44.43 35.82 39.76
Chinese Belebele 43.78 44.56 49.56 48.78 53.22
Global MMLU (CF) 36.16 33.79 39.57 38.56 44.55
Flores-200 (5-shot) 29.17 33.21 31.89 25.70 32.50
Russian Belebele 47.44 45.89 47.44 45.22 51.44
Global MMLU (CF) 36.51 32.47 34.52 34.83 38.80
Flores-200 (5-shot) 47.13 48.74 50.74 54.70 60.53

Instruction Model

No Extended Thinking

Evaluation results of non reasoning models and reasoning models in no thinking mode. We highlight the best and second-best scores in bold.

Category Metric SmoLLM3-3B Qwen2.5-3B Llama3.1-3B Qwen3-1.7B Qwen3-4B
High school math competition AIME 2025 9.3 2.9 0.3 8.0 17.1
Math problem-solving GSM-Plus 72.8 74.1 59.2 68.3 82.1
Competitive programming LiveCodeBench v4 15.2 10.5 3.4 15.0 24.9
Graduate-level reasoning GPQA Diamond 35.7 32.2 29.4 31.8 44.4
Instruction following IFEval 76.7 65.6 71.6 74.0 68.9
Alignment MixEval Hard 26.9 27.6 24.9 24.3 31.6
Knowledge MMLU-Pro 45.0 41.9 36.6 45.6 60.9
Multilingual Q&A Global MMLU 53.5 50.54 46.8 49.5 65.1

Extended Thinking

Evaluation results in reasoning mode for SmolLM3 and Qwen3 models:

Category Metric SmoLLM3-3B Qwen3-1.7B Qwen3-4B
High school math competition AIME 2025 36.7 30.7 58.8
Math problem-solving GSM-Plus 83.4 79.4 88.2
Competitive programming LiveCodeBench v4 30.0 34.4 52.9
Graduate-level reasoning GPQA Diamond 41.7 39.9 55.3
Instruction following IFEval 71.2 74.2 85.4
Alignment MixEval Hard 30.8 33.9 38.0
Knowledge MMLU-Pro 58.4 57.8 70.2
Multilingual Q&A Global MMLU 64.1 62.3 73.3

Training

Model

  • Architecture: Transformer decoder
  • Pretraining tokens: 11T
  • Precision: bfloat16

Software & hardware

Open resources

Here is an infographic with all the training details [TODO].

  • The datasets used for pretraining can be found in this collection and those used in mid-training and pos-training can be found here [TODO]
  • The training and evaluation configs and code can be found in the huggingface/smollm repository.

Limitations

SmolLM3 can produce text on a variety of topics, but the generated content may not always be factually accurate, logically consistent, or free from biases present in the training data. These models should be used as assistive tools rather than definitive sources of information. Users should always verify important information and critically evaluate any generated content.

License

Apache 2.0

Downloads last month
0
GGUF
Model size
3.08B params
Architecture
smollm3
Hardware compatibility
Log In to view the estimation

4-bit

8-bit

16-bit

Inference Providers NEW
This model isn't deployed by any Inference Provider. πŸ™‹ Ask for provider support

Model tree for ggml-org/SmolLM3-3B-GGUF

Quantized
(17)
this model