fold_4

This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6309
  • Unbiased Gwet Ac1: 0.2892
  • Unbiased Kripp Alpha: 0.5154
  • Qwk: 0.5442
  • Mse: 0.6309
  • Rmse: 0.7943

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Unbiased Gwet Ac1 Unbiased Kripp Alpha Qwk Mse Rmse
No log 1.0 2 11.0264 -0.0118 -0.7274 0.0206 11.0264 3.3206
No log 2.0 4 10.1682 -0.0050 -0.8152 0.0054 10.1682 3.1888
No log 3.0 6 9.2476 -0.0041 -0.8250 -0.0047 9.2476 3.0410
No log 4.0 8 8.4023 -0.0054 -0.8237 0.0042 8.4023 2.8987
No log 5.0 10 7.3372 -0.0028 -0.8349 0.0018 7.3372 2.7087
No log 6.0 12 6.7718 -0.0028 -0.8349 0.0018 6.7718 2.6023
No log 7.0 14 5.8404 -0.0119 -0.6409 0.0317 5.8404 2.4167
No log 8.0 16 5.2706 -0.0131 -0.6048 0.0592 5.2706 2.2958
No log 9.0 18 4.4730 0.0007 -0.6904 0.0214 4.4730 2.1149
No log 10.0 20 3.9152 0.0033 -0.7112 0.0118 3.9152 1.9787
No log 11.0 22 3.3715 0.0033 -0.7112 0.0118 3.3715 1.8362
No log 12.0 24 3.0821 0.0033 -0.7112 0.0118 3.0821 1.7556
No log 13.0 26 2.5599 0.0002 -0.7196 0.0079 2.5599 1.6000
No log 14.0 28 2.2373 0.0088 -0.1498 0.1313 2.2373 1.4958
No log 15.0 30 1.9770 0.0131 -0.2052 0.0803 1.9770 1.4061
No log 16.0 32 1.6936 0.0042 -0.2237 0.0672 1.6936 1.3014
No log 17.0 34 1.4444 0.0049 -0.2469 0.0445 1.4444 1.2018
No log 18.0 36 1.3404 0.0079 -0.2507 0.0420 1.3404 1.1578
No log 19.0 38 1.1688 0.0079 -0.2507 0.0420 1.1688 1.0811
No log 20.0 40 1.0322 0.0072 -0.2273 0.0648 1.0322 1.0160
No log 21.0 42 0.9298 0.0237 -0.1740 0.1033 0.9298 0.9643
No log 22.0 44 0.8616 0.0035 -0.1024 0.0910 0.8616 0.9282
No log 23.0 46 0.8940 -0.0339 -0.1872 0.0464 0.8940 0.9455
No log 24.0 48 0.8656 0.0349 -0.0191 0.1831 0.8656 0.9304
No log 25.0 50 0.9620 0.0887 0.0625 0.2636 0.9620 0.9808
No log 26.0 52 1.1317 0.0249 -0.0229 0.2346 1.1317 1.0638
No log 27.0 54 0.9522 0.1264 0.1760 0.3204 0.9522 0.9758
No log 28.0 56 0.7545 0.1640 0.4026 0.4734 0.7545 0.8686
No log 29.0 58 0.6778 0.1670 0.4616 0.5227 0.6778 0.8233
No log 30.0 60 0.7054 0.2387 0.5387 0.5655 0.7054 0.8399
No log 31.0 62 0.6837 0.2563 0.5670 0.5805 0.6837 0.8269
No log 32.0 64 0.5985 0.2240 0.5219 0.5537 0.5985 0.7736
No log 33.0 66 0.5619 0.2269 0.5256 0.5588 0.5619 0.7496
No log 34.0 68 0.5762 0.2730 0.5975 0.6053 0.5762 0.7590
No log 35.0 70 0.5503 0.2015 0.4777 0.5354 0.5503 0.7418
No log 36.0 72 0.6658 0.1201 0.3319 0.4158 0.6658 0.8159
No log 37.0 74 0.6725 0.1349 0.3599 0.4580 0.6725 0.8200
No log 38.0 76 0.6004 0.2957 0.5700 0.6031 0.6004 0.7749
No log 39.0 78 0.6630 0.2664 0.6158 0.6211 0.6630 0.8142
No log 40.0 80 0.5848 0.2870 0.5609 0.6024 0.5848 0.7647
No log 41.0 82 0.6953 0.1515 0.3126 0.4273 0.6953 0.8338
No log 42.0 84 0.7533 0.1282 0.2343 0.3531 0.7533 0.8679
No log 43.0 86 0.7389 0.1344 0.2823 0.3966 0.7389 0.8596
No log 44.0 88 0.7110 0.2096 0.3626 0.4500 0.7110 0.8432
No log 45.0 90 0.6533 0.2419 0.4436 0.5091 0.6533 0.8083
No log 46.0 92 0.6370 0.2765 0.5168 0.5589 0.6370 0.7982
No log 47.0 94 0.6482 0.2685 0.4708 0.5201 0.6482 0.8051
No log 48.0 96 0.6309 0.2674 0.4736 0.5137 0.6309 0.7943
No log 49.0 98 0.6205 0.2524 0.4705 0.5083 0.6205 0.7877
No log 50.0 100 0.6709 0.2175 0.4153 0.4780 0.6709 0.8191
No log 51.0 102 0.7670 0.1384 0.3039 0.3879 0.7670 0.8758
No log 52.0 104 0.7444 0.1406 0.3151 0.3900 0.7444 0.8628
No log 53.0 106 0.6048 0.2582 0.4956 0.5264 0.6048 0.7777
No log 54.0 108 0.6071 0.2673 0.4896 0.5159 0.6071 0.7792
No log 55.0 110 0.7582 0.2000 0.3423 0.3929 0.7582 0.8708
No log 56.0 112 0.7947 0.1649 0.3023 0.3609 0.7947 0.8914
No log 57.0 114 0.6972 0.2129 0.4037 0.4554 0.6972 0.8350
No log 58.0 116 0.6060 0.2646 0.5028 0.5436 0.6060 0.7785
No log 59.0 118 0.6440 0.2679 0.4897 0.5308 0.6440 0.8025
No log 60.0 120 0.7145 0.2334 0.4110 0.4617 0.7145 0.8453
No log 61.0 122 0.7068 0.1886 0.3854 0.4419 0.7068 0.8407
No log 62.0 124 0.6725 0.2689 0.4765 0.5173 0.6725 0.8201
No log 63.0 126 0.6400 0.2641 0.4897 0.5225 0.6400 0.8000
No log 64.0 128 0.6351 0.2554 0.5119 0.5568 0.6351 0.7969
No log 65.0 130 0.6172 0.2641 0.5133 0.5458 0.6172 0.7856
No log 66.0 132 0.6485 0.2789 0.4989 0.5343 0.6485 0.8053
No log 67.0 134 0.6669 0.2856 0.4948 0.5267 0.6669 0.8166
No log 68.0 136 0.6416 0.2990 0.5013 0.5342 0.6416 0.8010
No log 69.0 138 0.6093 0.2822 0.5551 0.5812 0.6093 0.7806
No log 70.0 140 0.6105 0.2753 0.5610 0.5865 0.6105 0.7813
No log 71.0 142 0.6137 0.2718 0.5603 0.5859 0.6137 0.7834
No log 72.0 144 0.6250 0.2748 0.5229 0.5533 0.6250 0.7906
No log 73.0 146 0.6977 0.2792 0.5173 0.5407 0.6977 0.8353
No log 74.0 148 0.7680 0.2497 0.4894 0.5253 0.7680 0.8764
No log 75.0 150 0.7736 0.2425 0.4873 0.5182 0.7736 0.8795
No log 76.0 152 0.7542 0.2501 0.4637 0.5039 0.7542 0.8684
No log 77.0 154 0.7603 0.2416 0.4272 0.4841 0.7603 0.8720
No log 78.0 156 0.7630 0.1946 0.3640 0.4356 0.7630 0.8735
No log 79.0 158 0.7593 0.1932 0.3634 0.4379 0.7593 0.8714
No log 80.0 160 0.7343 0.2040 0.3922 0.4571 0.7343 0.8569
No log 81.0 162 0.6865 0.2471 0.4510 0.4961 0.6865 0.8286
No log 82.0 164 0.6591 0.2886 0.5035 0.5341 0.6591 0.8118
No log 83.0 166 0.6387 0.2832 0.5008 0.5321 0.6387 0.7992
No log 84.0 168 0.6222 0.2831 0.5292 0.5582 0.6222 0.7888
No log 85.0 170 0.6247 0.2696 0.5177 0.5444 0.6247 0.7904
No log 86.0 172 0.6352 0.2555 0.4867 0.5291 0.6352 0.7970
No log 87.0 174 0.6533 0.2406 0.4609 0.5124 0.6533 0.8083
No log 88.0 176 0.6746 0.2385 0.4382 0.4919 0.6746 0.8213
No log 89.0 178 0.6812 0.2348 0.4387 0.4912 0.6812 0.8254
No log 90.0 180 0.6834 0.2335 0.4258 0.4818 0.6834 0.8267
No log 91.0 182 0.6777 0.2381 0.4299 0.4846 0.6777 0.8232
No log 92.0 184 0.6765 0.2369 0.4348 0.4898 0.6765 0.8225
No log 93.0 186 0.6695 0.2380 0.4401 0.4926 0.6695 0.8182
No log 94.0 188 0.6532 0.2599 0.4671 0.5100 0.6532 0.8082
No log 95.0 190 0.6379 0.2740 0.5055 0.5373 0.6379 0.7987
No log 96.0 192 0.6304 0.2867 0.5142 0.5435 0.6304 0.7940
No log 97.0 194 0.6276 0.2924 0.5227 0.5530 0.6276 0.7922
No log 98.0 196 0.6309 0.2892 0.5154 0.5442 0.6309 0.7943

Framework versions

  • Transformers 4.51.1
  • Pytorch 2.5.1+cu124
  • Datasets 3.5.0
  • Tokenizers 0.21.0
Downloads last month
4
Safetensors
Model size
109M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for genki10/fold_4

Finetuned
(5578)
this model