fold_4
This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.6309
- Unbiased Gwet Ac1: 0.2892
- Unbiased Kripp Alpha: 0.5154
- Qwk: 0.5442
- Mse: 0.6309
- Rmse: 0.7943
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Unbiased Gwet Ac1 | Unbiased Kripp Alpha | Qwk | Mse | Rmse |
---|---|---|---|---|---|---|---|---|
No log | 1.0 | 2 | 11.0264 | -0.0118 | -0.7274 | 0.0206 | 11.0264 | 3.3206 |
No log | 2.0 | 4 | 10.1682 | -0.0050 | -0.8152 | 0.0054 | 10.1682 | 3.1888 |
No log | 3.0 | 6 | 9.2476 | -0.0041 | -0.8250 | -0.0047 | 9.2476 | 3.0410 |
No log | 4.0 | 8 | 8.4023 | -0.0054 | -0.8237 | 0.0042 | 8.4023 | 2.8987 |
No log | 5.0 | 10 | 7.3372 | -0.0028 | -0.8349 | 0.0018 | 7.3372 | 2.7087 |
No log | 6.0 | 12 | 6.7718 | -0.0028 | -0.8349 | 0.0018 | 6.7718 | 2.6023 |
No log | 7.0 | 14 | 5.8404 | -0.0119 | -0.6409 | 0.0317 | 5.8404 | 2.4167 |
No log | 8.0 | 16 | 5.2706 | -0.0131 | -0.6048 | 0.0592 | 5.2706 | 2.2958 |
No log | 9.0 | 18 | 4.4730 | 0.0007 | -0.6904 | 0.0214 | 4.4730 | 2.1149 |
No log | 10.0 | 20 | 3.9152 | 0.0033 | -0.7112 | 0.0118 | 3.9152 | 1.9787 |
No log | 11.0 | 22 | 3.3715 | 0.0033 | -0.7112 | 0.0118 | 3.3715 | 1.8362 |
No log | 12.0 | 24 | 3.0821 | 0.0033 | -0.7112 | 0.0118 | 3.0821 | 1.7556 |
No log | 13.0 | 26 | 2.5599 | 0.0002 | -0.7196 | 0.0079 | 2.5599 | 1.6000 |
No log | 14.0 | 28 | 2.2373 | 0.0088 | -0.1498 | 0.1313 | 2.2373 | 1.4958 |
No log | 15.0 | 30 | 1.9770 | 0.0131 | -0.2052 | 0.0803 | 1.9770 | 1.4061 |
No log | 16.0 | 32 | 1.6936 | 0.0042 | -0.2237 | 0.0672 | 1.6936 | 1.3014 |
No log | 17.0 | 34 | 1.4444 | 0.0049 | -0.2469 | 0.0445 | 1.4444 | 1.2018 |
No log | 18.0 | 36 | 1.3404 | 0.0079 | -0.2507 | 0.0420 | 1.3404 | 1.1578 |
No log | 19.0 | 38 | 1.1688 | 0.0079 | -0.2507 | 0.0420 | 1.1688 | 1.0811 |
No log | 20.0 | 40 | 1.0322 | 0.0072 | -0.2273 | 0.0648 | 1.0322 | 1.0160 |
No log | 21.0 | 42 | 0.9298 | 0.0237 | -0.1740 | 0.1033 | 0.9298 | 0.9643 |
No log | 22.0 | 44 | 0.8616 | 0.0035 | -0.1024 | 0.0910 | 0.8616 | 0.9282 |
No log | 23.0 | 46 | 0.8940 | -0.0339 | -0.1872 | 0.0464 | 0.8940 | 0.9455 |
No log | 24.0 | 48 | 0.8656 | 0.0349 | -0.0191 | 0.1831 | 0.8656 | 0.9304 |
No log | 25.0 | 50 | 0.9620 | 0.0887 | 0.0625 | 0.2636 | 0.9620 | 0.9808 |
No log | 26.0 | 52 | 1.1317 | 0.0249 | -0.0229 | 0.2346 | 1.1317 | 1.0638 |
No log | 27.0 | 54 | 0.9522 | 0.1264 | 0.1760 | 0.3204 | 0.9522 | 0.9758 |
No log | 28.0 | 56 | 0.7545 | 0.1640 | 0.4026 | 0.4734 | 0.7545 | 0.8686 |
No log | 29.0 | 58 | 0.6778 | 0.1670 | 0.4616 | 0.5227 | 0.6778 | 0.8233 |
No log | 30.0 | 60 | 0.7054 | 0.2387 | 0.5387 | 0.5655 | 0.7054 | 0.8399 |
No log | 31.0 | 62 | 0.6837 | 0.2563 | 0.5670 | 0.5805 | 0.6837 | 0.8269 |
No log | 32.0 | 64 | 0.5985 | 0.2240 | 0.5219 | 0.5537 | 0.5985 | 0.7736 |
No log | 33.0 | 66 | 0.5619 | 0.2269 | 0.5256 | 0.5588 | 0.5619 | 0.7496 |
No log | 34.0 | 68 | 0.5762 | 0.2730 | 0.5975 | 0.6053 | 0.5762 | 0.7590 |
No log | 35.0 | 70 | 0.5503 | 0.2015 | 0.4777 | 0.5354 | 0.5503 | 0.7418 |
No log | 36.0 | 72 | 0.6658 | 0.1201 | 0.3319 | 0.4158 | 0.6658 | 0.8159 |
No log | 37.0 | 74 | 0.6725 | 0.1349 | 0.3599 | 0.4580 | 0.6725 | 0.8200 |
No log | 38.0 | 76 | 0.6004 | 0.2957 | 0.5700 | 0.6031 | 0.6004 | 0.7749 |
No log | 39.0 | 78 | 0.6630 | 0.2664 | 0.6158 | 0.6211 | 0.6630 | 0.8142 |
No log | 40.0 | 80 | 0.5848 | 0.2870 | 0.5609 | 0.6024 | 0.5848 | 0.7647 |
No log | 41.0 | 82 | 0.6953 | 0.1515 | 0.3126 | 0.4273 | 0.6953 | 0.8338 |
No log | 42.0 | 84 | 0.7533 | 0.1282 | 0.2343 | 0.3531 | 0.7533 | 0.8679 |
No log | 43.0 | 86 | 0.7389 | 0.1344 | 0.2823 | 0.3966 | 0.7389 | 0.8596 |
No log | 44.0 | 88 | 0.7110 | 0.2096 | 0.3626 | 0.4500 | 0.7110 | 0.8432 |
No log | 45.0 | 90 | 0.6533 | 0.2419 | 0.4436 | 0.5091 | 0.6533 | 0.8083 |
No log | 46.0 | 92 | 0.6370 | 0.2765 | 0.5168 | 0.5589 | 0.6370 | 0.7982 |
No log | 47.0 | 94 | 0.6482 | 0.2685 | 0.4708 | 0.5201 | 0.6482 | 0.8051 |
No log | 48.0 | 96 | 0.6309 | 0.2674 | 0.4736 | 0.5137 | 0.6309 | 0.7943 |
No log | 49.0 | 98 | 0.6205 | 0.2524 | 0.4705 | 0.5083 | 0.6205 | 0.7877 |
No log | 50.0 | 100 | 0.6709 | 0.2175 | 0.4153 | 0.4780 | 0.6709 | 0.8191 |
No log | 51.0 | 102 | 0.7670 | 0.1384 | 0.3039 | 0.3879 | 0.7670 | 0.8758 |
No log | 52.0 | 104 | 0.7444 | 0.1406 | 0.3151 | 0.3900 | 0.7444 | 0.8628 |
No log | 53.0 | 106 | 0.6048 | 0.2582 | 0.4956 | 0.5264 | 0.6048 | 0.7777 |
No log | 54.0 | 108 | 0.6071 | 0.2673 | 0.4896 | 0.5159 | 0.6071 | 0.7792 |
No log | 55.0 | 110 | 0.7582 | 0.2000 | 0.3423 | 0.3929 | 0.7582 | 0.8708 |
No log | 56.0 | 112 | 0.7947 | 0.1649 | 0.3023 | 0.3609 | 0.7947 | 0.8914 |
No log | 57.0 | 114 | 0.6972 | 0.2129 | 0.4037 | 0.4554 | 0.6972 | 0.8350 |
No log | 58.0 | 116 | 0.6060 | 0.2646 | 0.5028 | 0.5436 | 0.6060 | 0.7785 |
No log | 59.0 | 118 | 0.6440 | 0.2679 | 0.4897 | 0.5308 | 0.6440 | 0.8025 |
No log | 60.0 | 120 | 0.7145 | 0.2334 | 0.4110 | 0.4617 | 0.7145 | 0.8453 |
No log | 61.0 | 122 | 0.7068 | 0.1886 | 0.3854 | 0.4419 | 0.7068 | 0.8407 |
No log | 62.0 | 124 | 0.6725 | 0.2689 | 0.4765 | 0.5173 | 0.6725 | 0.8201 |
No log | 63.0 | 126 | 0.6400 | 0.2641 | 0.4897 | 0.5225 | 0.6400 | 0.8000 |
No log | 64.0 | 128 | 0.6351 | 0.2554 | 0.5119 | 0.5568 | 0.6351 | 0.7969 |
No log | 65.0 | 130 | 0.6172 | 0.2641 | 0.5133 | 0.5458 | 0.6172 | 0.7856 |
No log | 66.0 | 132 | 0.6485 | 0.2789 | 0.4989 | 0.5343 | 0.6485 | 0.8053 |
No log | 67.0 | 134 | 0.6669 | 0.2856 | 0.4948 | 0.5267 | 0.6669 | 0.8166 |
No log | 68.0 | 136 | 0.6416 | 0.2990 | 0.5013 | 0.5342 | 0.6416 | 0.8010 |
No log | 69.0 | 138 | 0.6093 | 0.2822 | 0.5551 | 0.5812 | 0.6093 | 0.7806 |
No log | 70.0 | 140 | 0.6105 | 0.2753 | 0.5610 | 0.5865 | 0.6105 | 0.7813 |
No log | 71.0 | 142 | 0.6137 | 0.2718 | 0.5603 | 0.5859 | 0.6137 | 0.7834 |
No log | 72.0 | 144 | 0.6250 | 0.2748 | 0.5229 | 0.5533 | 0.6250 | 0.7906 |
No log | 73.0 | 146 | 0.6977 | 0.2792 | 0.5173 | 0.5407 | 0.6977 | 0.8353 |
No log | 74.0 | 148 | 0.7680 | 0.2497 | 0.4894 | 0.5253 | 0.7680 | 0.8764 |
No log | 75.0 | 150 | 0.7736 | 0.2425 | 0.4873 | 0.5182 | 0.7736 | 0.8795 |
No log | 76.0 | 152 | 0.7542 | 0.2501 | 0.4637 | 0.5039 | 0.7542 | 0.8684 |
No log | 77.0 | 154 | 0.7603 | 0.2416 | 0.4272 | 0.4841 | 0.7603 | 0.8720 |
No log | 78.0 | 156 | 0.7630 | 0.1946 | 0.3640 | 0.4356 | 0.7630 | 0.8735 |
No log | 79.0 | 158 | 0.7593 | 0.1932 | 0.3634 | 0.4379 | 0.7593 | 0.8714 |
No log | 80.0 | 160 | 0.7343 | 0.2040 | 0.3922 | 0.4571 | 0.7343 | 0.8569 |
No log | 81.0 | 162 | 0.6865 | 0.2471 | 0.4510 | 0.4961 | 0.6865 | 0.8286 |
No log | 82.0 | 164 | 0.6591 | 0.2886 | 0.5035 | 0.5341 | 0.6591 | 0.8118 |
No log | 83.0 | 166 | 0.6387 | 0.2832 | 0.5008 | 0.5321 | 0.6387 | 0.7992 |
No log | 84.0 | 168 | 0.6222 | 0.2831 | 0.5292 | 0.5582 | 0.6222 | 0.7888 |
No log | 85.0 | 170 | 0.6247 | 0.2696 | 0.5177 | 0.5444 | 0.6247 | 0.7904 |
No log | 86.0 | 172 | 0.6352 | 0.2555 | 0.4867 | 0.5291 | 0.6352 | 0.7970 |
No log | 87.0 | 174 | 0.6533 | 0.2406 | 0.4609 | 0.5124 | 0.6533 | 0.8083 |
No log | 88.0 | 176 | 0.6746 | 0.2385 | 0.4382 | 0.4919 | 0.6746 | 0.8213 |
No log | 89.0 | 178 | 0.6812 | 0.2348 | 0.4387 | 0.4912 | 0.6812 | 0.8254 |
No log | 90.0 | 180 | 0.6834 | 0.2335 | 0.4258 | 0.4818 | 0.6834 | 0.8267 |
No log | 91.0 | 182 | 0.6777 | 0.2381 | 0.4299 | 0.4846 | 0.6777 | 0.8232 |
No log | 92.0 | 184 | 0.6765 | 0.2369 | 0.4348 | 0.4898 | 0.6765 | 0.8225 |
No log | 93.0 | 186 | 0.6695 | 0.2380 | 0.4401 | 0.4926 | 0.6695 | 0.8182 |
No log | 94.0 | 188 | 0.6532 | 0.2599 | 0.4671 | 0.5100 | 0.6532 | 0.8082 |
No log | 95.0 | 190 | 0.6379 | 0.2740 | 0.5055 | 0.5373 | 0.6379 | 0.7987 |
No log | 96.0 | 192 | 0.6304 | 0.2867 | 0.5142 | 0.5435 | 0.6304 | 0.7940 |
No log | 97.0 | 194 | 0.6276 | 0.2924 | 0.5227 | 0.5530 | 0.6276 | 0.7922 |
No log | 98.0 | 196 | 0.6309 | 0.2892 | 0.5154 | 0.5442 | 0.6309 | 0.7943 |
Framework versions
- Transformers 4.51.1
- Pytorch 2.5.1+cu124
- Datasets 3.5.0
- Tokenizers 0.21.0
- Downloads last month
- 4
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for genki10/fold_4
Base model
google-bert/bert-base-uncased