fold_3
This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.9679
- Unbiased Gwet Ac1: 0.1737
- Unbiased Kripp Alpha: 0.3725
- Qwk: 0.4428
- Mse: 0.9682
- Rmse: 0.9840
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Unbiased Gwet Ac1 | Unbiased Kripp Alpha | Qwk | Mse | Rmse |
---|---|---|---|---|---|---|---|---|
No log | 1.0 | 2 | 10.9112 | 0.0004 | -0.8331 | 0.0012 | 10.9086 | 3.3028 |
No log | 2.0 | 4 | 9.8463 | 0.0 | -0.8450 | 0.0 | 9.8442 | 3.1376 |
No log | 3.0 | 6 | 7.9872 | 0.0 | -0.8450 | 0.0 | 7.9857 | 2.8259 |
No log | 4.0 | 8 | 6.5936 | 0.0 | -0.8450 | 0.0 | 6.5923 | 2.5675 |
No log | 5.0 | 10 | 5.4361 | 0.0080 | -0.6818 | 0.0205 | 5.4350 | 2.3313 |
No log | 6.0 | 12 | 4.5422 | 0.0062 | -0.7140 | 0.0076 | 4.5411 | 2.1310 |
No log | 7.0 | 14 | 3.8632 | 0.0 | -0.7309 | 0.0 | 3.8621 | 1.9652 |
No log | 8.0 | 16 | 3.3408 | 0.0 | -0.7309 | 0.0 | 3.3395 | 1.8274 |
No log | 9.0 | 18 | 2.6894 | 0.0162 | -0.4627 | 0.0303 | 2.6886 | 1.6397 |
No log | 10.0 | 20 | 2.4224 | 0.0352 | -0.3567 | -0.0119 | 2.4216 | 1.5562 |
No log | 11.0 | 22 | 1.8935 | 0.0037 | -0.3013 | 0.0147 | 1.8928 | 1.3758 |
No log | 12.0 | 24 | 1.7246 | 0.0009 | -0.3029 | 0.0102 | 1.7238 | 1.3129 |
No log | 13.0 | 26 | 1.4728 | 0.0009 | -0.3029 | 0.0102 | 1.4720 | 1.2133 |
No log | 14.0 | 28 | 1.4406 | 0.0028 | -0.2838 | 0.0302 | 1.4400 | 1.2000 |
No log | 15.0 | 30 | 1.4410 | 0.0037 | -0.2743 | 0.0401 | 1.4405 | 1.2002 |
No log | 16.0 | 32 | 1.3592 | 0.0037 | -0.2743 | 0.0401 | 1.3587 | 1.1656 |
No log | 17.0 | 34 | 1.2802 | 0.0037 | -0.2743 | 0.0401 | 1.2797 | 1.1312 |
No log | 18.0 | 36 | 1.1438 | 0.0028 | -0.2838 | 0.0302 | 1.1433 | 1.0693 |
No log | 19.0 | 38 | 1.0841 | 0.0028 | -0.2838 | 0.0302 | 1.0835 | 1.0409 |
No log | 20.0 | 40 | 1.0108 | 0.0028 | -0.2838 | 0.0302 | 1.0103 | 1.0052 |
No log | 21.0 | 42 | 0.9483 | 0.0292 | -0.0108 | 0.1367 | 0.9480 | 0.9737 |
No log | 22.0 | 44 | 0.9575 | 0.0742 | 0.0796 | 0.1955 | 0.9574 | 0.9785 |
No log | 23.0 | 46 | 0.8089 | 0.1912 | 0.3440 | 0.3669 | 0.8088 | 0.8993 |
No log | 24.0 | 48 | 0.7144 | 0.1398 | 0.3876 | 0.3988 | 0.7141 | 0.8450 |
No log | 25.0 | 50 | 0.6682 | 0.1443 | 0.3907 | 0.4126 | 0.6679 | 0.8173 |
No log | 26.0 | 52 | 0.6238 | 0.2224 | 0.4450 | 0.4816 | 0.6238 | 0.7898 |
No log | 27.0 | 54 | 0.7536 | 0.2575 | 0.4292 | 0.4892 | 0.7537 | 0.8682 |
No log | 28.0 | 56 | 0.8404 | 0.1738 | 0.3979 | 0.4678 | 0.8406 | 0.9168 |
No log | 29.0 | 58 | 0.6570 | 0.2704 | 0.4635 | 0.5180 | 0.6570 | 0.8106 |
No log | 30.0 | 60 | 0.5494 | 0.2269 | 0.4504 | 0.5097 | 0.5494 | 0.7412 |
No log | 31.0 | 62 | 0.5615 | 0.2551 | 0.4790 | 0.5394 | 0.5614 | 0.7493 |
No log | 32.0 | 64 | 0.7951 | 0.2052 | 0.3721 | 0.4521 | 0.7951 | 0.8917 |
No log | 33.0 | 66 | 0.7617 | 0.2007 | 0.3813 | 0.4612 | 0.7617 | 0.8727 |
No log | 34.0 | 68 | 0.5478 | 0.2747 | 0.4955 | 0.5420 | 0.5479 | 0.7402 |
No log | 35.0 | 70 | 0.5313 | 0.2787 | 0.5023 | 0.5516 | 0.5314 | 0.7290 |
No log | 36.0 | 72 | 0.7620 | 0.2091 | 0.4196 | 0.4899 | 0.7622 | 0.8731 |
No log | 37.0 | 74 | 0.8693 | 0.1787 | 0.3826 | 0.4640 | 0.8695 | 0.9325 |
No log | 38.0 | 76 | 0.5556 | 0.2973 | 0.5413 | 0.5814 | 0.5559 | 0.7456 |
No log | 39.0 | 78 | 0.5383 | 0.2785 | 0.5101 | 0.5664 | 0.5385 | 0.7338 |
No log | 40.0 | 80 | 0.5336 | 0.2779 | 0.5325 | 0.5824 | 0.5338 | 0.7306 |
No log | 41.0 | 82 | 0.5909 | 0.2950 | 0.5230 | 0.5754 | 0.5911 | 0.7688 |
No log | 42.0 | 84 | 0.6910 | 0.2401 | 0.4750 | 0.5261 | 0.6913 | 0.8315 |
No log | 43.0 | 86 | 0.7529 | 0.2136 | 0.4463 | 0.5033 | 0.7532 | 0.8679 |
No log | 44.0 | 88 | 0.6987 | 0.2522 | 0.4928 | 0.5440 | 0.6990 | 0.8361 |
No log | 45.0 | 90 | 0.5650 | 0.2768 | 0.5486 | 0.5994 | 0.5652 | 0.7518 |
No log | 46.0 | 92 | 0.5696 | 0.2778 | 0.5538 | 0.6050 | 0.5698 | 0.7548 |
No log | 47.0 | 94 | 0.6059 | 0.2868 | 0.5338 | 0.5791 | 0.6062 | 0.7786 |
No log | 48.0 | 96 | 0.6107 | 0.2817 | 0.5207 | 0.5693 | 0.6110 | 0.7817 |
No log | 49.0 | 98 | 0.5900 | 0.2543 | 0.5192 | 0.5823 | 0.5903 | 0.7683 |
No log | 50.0 | 100 | 0.6303 | 0.2040 | 0.5091 | 0.5733 | 0.6306 | 0.7941 |
No log | 51.0 | 102 | 0.6045 | 0.2586 | 0.5216 | 0.5772 | 0.6048 | 0.7777 |
No log | 52.0 | 104 | 0.6263 | 0.2536 | 0.4975 | 0.5414 | 0.6266 | 0.7916 |
No log | 53.0 | 106 | 0.6137 | 0.2299 | 0.5097 | 0.5519 | 0.6140 | 0.7836 |
No log | 54.0 | 108 | 0.6180 | 0.2708 | 0.5341 | 0.5675 | 0.6182 | 0.7863 |
No log | 55.0 | 110 | 0.6335 | 0.2654 | 0.5176 | 0.5519 | 0.6336 | 0.7960 |
No log | 56.0 | 112 | 0.6511 | 0.2131 | 0.4970 | 0.5386 | 0.6511 | 0.8069 |
No log | 57.0 | 114 | 0.6547 | 0.2366 | 0.5167 | 0.5537 | 0.6546 | 0.8091 |
No log | 58.0 | 116 | 0.7089 | 0.2448 | 0.4935 | 0.5244 | 0.7089 | 0.8420 |
No log | 59.0 | 118 | 0.8342 | 0.1901 | 0.4026 | 0.4441 | 0.8343 | 0.9134 |
No log | 60.0 | 120 | 0.8733 | 0.1610 | 0.3750 | 0.4274 | 0.8735 | 0.9346 |
No log | 61.0 | 122 | 0.8533 | 0.1930 | 0.4014 | 0.4448 | 0.8534 | 0.9238 |
No log | 62.0 | 124 | 0.7273 | 0.2353 | 0.4673 | 0.5033 | 0.7273 | 0.8528 |
No log | 63.0 | 126 | 0.6740 | 0.2485 | 0.5159 | 0.5395 | 0.6739 | 0.8209 |
No log | 64.0 | 128 | 0.7042 | 0.2216 | 0.5027 | 0.5462 | 0.7041 | 0.8391 |
No log | 65.0 | 130 | 0.6792 | 0.2530 | 0.5274 | 0.5538 | 0.6791 | 0.8241 |
No log | 66.0 | 132 | 0.7837 | 0.2395 | 0.4682 | 0.5121 | 0.7839 | 0.8854 |
No log | 67.0 | 134 | 0.9513 | 0.1706 | 0.3735 | 0.4416 | 0.9516 | 0.9755 |
No log | 68.0 | 136 | 0.9679 | 0.1737 | 0.3725 | 0.4428 | 0.9682 | 0.9840 |
Framework versions
- Transformers 4.51.1
- Pytorch 2.5.1+cu124
- Datasets 3.5.0
- Tokenizers 0.21.0
- Downloads last month
- 4
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for genki10/fold_3
Base model
google-bert/bert-base-uncased