fold_3

This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9679
  • Unbiased Gwet Ac1: 0.1737
  • Unbiased Kripp Alpha: 0.3725
  • Qwk: 0.4428
  • Mse: 0.9682
  • Rmse: 0.9840

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Unbiased Gwet Ac1 Unbiased Kripp Alpha Qwk Mse Rmse
No log 1.0 2 10.9112 0.0004 -0.8331 0.0012 10.9086 3.3028
No log 2.0 4 9.8463 0.0 -0.8450 0.0 9.8442 3.1376
No log 3.0 6 7.9872 0.0 -0.8450 0.0 7.9857 2.8259
No log 4.0 8 6.5936 0.0 -0.8450 0.0 6.5923 2.5675
No log 5.0 10 5.4361 0.0080 -0.6818 0.0205 5.4350 2.3313
No log 6.0 12 4.5422 0.0062 -0.7140 0.0076 4.5411 2.1310
No log 7.0 14 3.8632 0.0 -0.7309 0.0 3.8621 1.9652
No log 8.0 16 3.3408 0.0 -0.7309 0.0 3.3395 1.8274
No log 9.0 18 2.6894 0.0162 -0.4627 0.0303 2.6886 1.6397
No log 10.0 20 2.4224 0.0352 -0.3567 -0.0119 2.4216 1.5562
No log 11.0 22 1.8935 0.0037 -0.3013 0.0147 1.8928 1.3758
No log 12.0 24 1.7246 0.0009 -0.3029 0.0102 1.7238 1.3129
No log 13.0 26 1.4728 0.0009 -0.3029 0.0102 1.4720 1.2133
No log 14.0 28 1.4406 0.0028 -0.2838 0.0302 1.4400 1.2000
No log 15.0 30 1.4410 0.0037 -0.2743 0.0401 1.4405 1.2002
No log 16.0 32 1.3592 0.0037 -0.2743 0.0401 1.3587 1.1656
No log 17.0 34 1.2802 0.0037 -0.2743 0.0401 1.2797 1.1312
No log 18.0 36 1.1438 0.0028 -0.2838 0.0302 1.1433 1.0693
No log 19.0 38 1.0841 0.0028 -0.2838 0.0302 1.0835 1.0409
No log 20.0 40 1.0108 0.0028 -0.2838 0.0302 1.0103 1.0052
No log 21.0 42 0.9483 0.0292 -0.0108 0.1367 0.9480 0.9737
No log 22.0 44 0.9575 0.0742 0.0796 0.1955 0.9574 0.9785
No log 23.0 46 0.8089 0.1912 0.3440 0.3669 0.8088 0.8993
No log 24.0 48 0.7144 0.1398 0.3876 0.3988 0.7141 0.8450
No log 25.0 50 0.6682 0.1443 0.3907 0.4126 0.6679 0.8173
No log 26.0 52 0.6238 0.2224 0.4450 0.4816 0.6238 0.7898
No log 27.0 54 0.7536 0.2575 0.4292 0.4892 0.7537 0.8682
No log 28.0 56 0.8404 0.1738 0.3979 0.4678 0.8406 0.9168
No log 29.0 58 0.6570 0.2704 0.4635 0.5180 0.6570 0.8106
No log 30.0 60 0.5494 0.2269 0.4504 0.5097 0.5494 0.7412
No log 31.0 62 0.5615 0.2551 0.4790 0.5394 0.5614 0.7493
No log 32.0 64 0.7951 0.2052 0.3721 0.4521 0.7951 0.8917
No log 33.0 66 0.7617 0.2007 0.3813 0.4612 0.7617 0.8727
No log 34.0 68 0.5478 0.2747 0.4955 0.5420 0.5479 0.7402
No log 35.0 70 0.5313 0.2787 0.5023 0.5516 0.5314 0.7290
No log 36.0 72 0.7620 0.2091 0.4196 0.4899 0.7622 0.8731
No log 37.0 74 0.8693 0.1787 0.3826 0.4640 0.8695 0.9325
No log 38.0 76 0.5556 0.2973 0.5413 0.5814 0.5559 0.7456
No log 39.0 78 0.5383 0.2785 0.5101 0.5664 0.5385 0.7338
No log 40.0 80 0.5336 0.2779 0.5325 0.5824 0.5338 0.7306
No log 41.0 82 0.5909 0.2950 0.5230 0.5754 0.5911 0.7688
No log 42.0 84 0.6910 0.2401 0.4750 0.5261 0.6913 0.8315
No log 43.0 86 0.7529 0.2136 0.4463 0.5033 0.7532 0.8679
No log 44.0 88 0.6987 0.2522 0.4928 0.5440 0.6990 0.8361
No log 45.0 90 0.5650 0.2768 0.5486 0.5994 0.5652 0.7518
No log 46.0 92 0.5696 0.2778 0.5538 0.6050 0.5698 0.7548
No log 47.0 94 0.6059 0.2868 0.5338 0.5791 0.6062 0.7786
No log 48.0 96 0.6107 0.2817 0.5207 0.5693 0.6110 0.7817
No log 49.0 98 0.5900 0.2543 0.5192 0.5823 0.5903 0.7683
No log 50.0 100 0.6303 0.2040 0.5091 0.5733 0.6306 0.7941
No log 51.0 102 0.6045 0.2586 0.5216 0.5772 0.6048 0.7777
No log 52.0 104 0.6263 0.2536 0.4975 0.5414 0.6266 0.7916
No log 53.0 106 0.6137 0.2299 0.5097 0.5519 0.6140 0.7836
No log 54.0 108 0.6180 0.2708 0.5341 0.5675 0.6182 0.7863
No log 55.0 110 0.6335 0.2654 0.5176 0.5519 0.6336 0.7960
No log 56.0 112 0.6511 0.2131 0.4970 0.5386 0.6511 0.8069
No log 57.0 114 0.6547 0.2366 0.5167 0.5537 0.6546 0.8091
No log 58.0 116 0.7089 0.2448 0.4935 0.5244 0.7089 0.8420
No log 59.0 118 0.8342 0.1901 0.4026 0.4441 0.8343 0.9134
No log 60.0 120 0.8733 0.1610 0.3750 0.4274 0.8735 0.9346
No log 61.0 122 0.8533 0.1930 0.4014 0.4448 0.8534 0.9238
No log 62.0 124 0.7273 0.2353 0.4673 0.5033 0.7273 0.8528
No log 63.0 126 0.6740 0.2485 0.5159 0.5395 0.6739 0.8209
No log 64.0 128 0.7042 0.2216 0.5027 0.5462 0.7041 0.8391
No log 65.0 130 0.6792 0.2530 0.5274 0.5538 0.6791 0.8241
No log 66.0 132 0.7837 0.2395 0.4682 0.5121 0.7839 0.8854
No log 67.0 134 0.9513 0.1706 0.3735 0.4416 0.9516 0.9755
No log 68.0 136 0.9679 0.1737 0.3725 0.4428 0.9682 0.9840

Framework versions

  • Transformers 4.51.1
  • Pytorch 2.5.1+cu124
  • Datasets 3.5.0
  • Tokenizers 0.21.0
Downloads last month
4
Safetensors
Model size
109M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for genki10/fold_3

Finetuned
(5578)
this model