fold_2

This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6860
  • Unbiased Gwet Ac1: 0.1645
  • Unbiased Kripp Alpha: 0.3978
  • Qwk: 0.4826
  • Mse: 0.6862
  • Rmse: 0.8283

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Unbiased Gwet Ac1 Unbiased Kripp Alpha Qwk Mse Rmse
No log 1.0 2 13.8667 0.0 -0.8682 0.0 13.8669 3.7238
No log 2.0 4 11.2585 -0.0077 -0.7897 -0.0019 11.2588 3.3554
No log 3.0 6 9.9494 0.0 -0.8493 0.0 9.9495 3.1543
No log 4.0 8 9.4986 0.0 -0.8493 0.0 9.4988 3.0820
No log 5.0 10 6.6041 -0.0037 -0.7515 0.0085 6.6049 2.5700
No log 6.0 12 6.6811 0.0144 -0.8137 -0.0241 6.6806 2.5847
No log 7.0 14 4.7936 0.0051 -0.6906 0.0211 4.7937 2.1894
No log 8.0 16 3.6890 0.0031 -0.7284 0.0039 3.6897 1.9209
No log 9.0 18 2.9625 0.0031 -0.7284 0.0039 2.9629 1.7213
No log 10.0 20 2.2825 0.0375 -0.2708 0.0713 2.2830 1.5110
No log 11.0 22 1.7107 -0.0023 -0.2679 0.0361 1.7113 1.3082
No log 12.0 24 1.5328 0.0077 -0.2822 0.0268 1.5334 1.2383
No log 13.0 26 1.1126 0.0019 -0.2885 0.0213 1.1130 1.0550
No log 14.0 28 0.9343 0.0099 -0.2528 0.0286 0.9347 0.9668
No log 15.0 30 1.0945 0.0403 -0.1429 0.0703 1.0951 1.0465
No log 16.0 32 0.8949 0.0910 0.0875 0.1570 0.8954 0.9463
No log 17.0 34 0.7196 0.0847 0.2800 0.2880 0.7199 0.8485
No log 18.0 36 0.6785 0.1669 0.4253 0.3972 0.6788 0.8239
No log 19.0 38 0.9353 0.0834 0.0399 0.1830 0.9357 0.9673
No log 20.0 40 0.6663 0.2074 0.4600 0.4454 0.6665 0.8164
No log 21.0 42 0.6293 0.1670 0.4101 0.4102 0.6293 0.7933
No log 22.0 44 0.7201 0.1480 0.3191 0.3502 0.7201 0.8486
No log 23.0 46 0.7950 0.1589 0.2945 0.3688 0.7950 0.8916
No log 24.0 48 0.8493 0.1760 0.4220 0.4799 0.8494 0.9216
No log 25.0 50 0.6508 0.2350 0.5358 0.5766 0.6508 0.8067
No log 26.0 52 0.6383 0.2318 0.4965 0.5382 0.6385 0.7990
No log 27.0 54 0.7376 0.1910 0.3921 0.4543 0.7379 0.8590
No log 28.0 56 0.4943 0.2212 0.4891 0.4950 0.4943 0.7031
No log 29.0 58 0.5398 0.2343 0.5046 0.4943 0.5400 0.7348
No log 30.0 60 1.1495 0.0557 -0.1583 0.1291 1.1499 1.0723
No log 31.0 62 1.3284 0.0366 -0.1900 0.1163 1.3289 1.1528
No log 32.0 64 1.1032 0.0597 -0.1612 0.1255 1.1036 1.0505
No log 33.0 66 0.6629 0.1659 0.3846 0.4176 0.6633 0.8144
No log 34.0 68 0.5792 0.1300 0.3775 0.4239 0.5791 0.7610
No log 35.0 70 0.5951 0.2046 0.4271 0.4911 0.5949 0.7713
No log 36.0 72 0.5759 0.2207 0.4681 0.4985 0.5760 0.7589
No log 37.0 74 1.4122 0.0350 0.0482 0.2925 1.4125 1.1885
No log 38.0 76 1.4282 0.0338 0.0383 0.2883 1.4284 1.1952
No log 39.0 78 0.8152 0.1789 0.3651 0.4589 0.8153 0.9029
No log 40.0 80 0.5022 0.2409 0.5870 0.6120 0.5020 0.7085
No log 41.0 82 0.5191 0.2445 0.5527 0.5812 0.5190 0.7204
No log 42.0 84 0.9344 0.1513 0.2424 0.3849 0.9346 0.9667
No log 43.0 86 1.1275 0.0678 0.0851 0.3026 1.1277 1.0619
No log 44.0 88 0.8308 0.1440 0.3246 0.4292 0.8309 0.9115
No log 45.0 90 0.4983 0.2713 0.5618 0.5826 0.4982 0.7059
No log 46.0 92 0.5774 0.2181 0.4987 0.5680 0.5771 0.7597
No log 47.0 94 0.5246 0.2205 0.5210 0.5722 0.5245 0.7242
No log 48.0 96 0.7050 0.1544 0.3860 0.4484 0.7051 0.8397
No log 49.0 98 1.2352 0.0598 0.0348 0.2697 1.2352 1.1114
No log 50.0 100 1.4866 0.0042 -0.0368 0.2387 1.4867 1.2193
No log 51.0 102 1.3744 0.0308 0.0093 0.2606 1.3744 1.1723
No log 52.0 104 0.9605 0.1383 0.2746 0.3969 0.9604 0.9800
No log 53.0 106 0.5690 0.2417 0.5454 0.5844 0.5688 0.7542
No log 54.0 108 0.6415 0.1839 0.4684 0.5420 0.6413 0.8008
No log 55.0 110 0.6878 0.1446 0.4398 0.5261 0.6876 0.8292
No log 56.0 112 0.5938 0.2095 0.5135 0.5669 0.5936 0.7704
No log 57.0 114 0.8847 0.1548 0.2842 0.3888 0.8845 0.9405
No log 58.0 116 1.2858 0.0710 0.0533 0.2848 1.2858 1.1339
No log 59.0 118 1.1605 0.0934 0.1134 0.3070 1.1605 1.0773
No log 60.0 120 0.7612 0.1882 0.3337 0.4131 0.7612 0.8725
No log 61.0 122 0.6327 0.2089 0.3985 0.4643 0.6327 0.7954
No log 62.0 124 0.6697 0.1903 0.3661 0.4368 0.6697 0.8183
No log 63.0 126 0.7832 0.1741 0.3306 0.4135 0.7833 0.8850
No log 64.0 128 0.8755 0.1347 0.2540 0.3681 0.8756 0.9357
No log 65.0 130 0.8553 0.1380 0.2681 0.3662 0.8554 0.9249
No log 66.0 132 0.7031 0.1933 0.3778 0.4450 0.7032 0.8386
No log 67.0 134 0.6951 0.1784 0.3883 0.4630 0.6953 0.8338
No log 68.0 136 0.7833 0.1635 0.3269 0.4090 0.7835 0.8851
No log 69.0 138 1.1226 0.0895 0.1364 0.3031 1.1227 1.0596
No log 70.0 140 1.4026 0.0514 -0.0342 0.2167 1.4028 1.1844
No log 71.0 142 1.3493 0.0559 -0.0015 0.2321 1.3494 1.1616
No log 72.0 144 1.0388 0.1075 0.1767 0.3192 1.0389 1.0193
No log 73.0 146 0.7402 0.1650 0.3715 0.4393 0.7403 0.8604
No log 74.0 148 0.6865 0.1610 0.3686 0.4522 0.6866 0.8286
No log 75.0 150 0.6860 0.1645 0.3978 0.4826 0.6862 0.8283

Framework versions

  • Transformers 4.51.1
  • Pytorch 2.5.1+cu124
  • Datasets 3.5.0
  • Tokenizers 0.21.0
Downloads last month
4
Safetensors
Model size
109M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for genki10/fold_2

Finetuned
(5578)
this model