fold_2
This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.6860
- Unbiased Gwet Ac1: 0.1645
- Unbiased Kripp Alpha: 0.3978
- Qwk: 0.4826
- Mse: 0.6862
- Rmse: 0.8283
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Unbiased Gwet Ac1 | Unbiased Kripp Alpha | Qwk | Mse | Rmse |
---|---|---|---|---|---|---|---|---|
No log | 1.0 | 2 | 13.8667 | 0.0 | -0.8682 | 0.0 | 13.8669 | 3.7238 |
No log | 2.0 | 4 | 11.2585 | -0.0077 | -0.7897 | -0.0019 | 11.2588 | 3.3554 |
No log | 3.0 | 6 | 9.9494 | 0.0 | -0.8493 | 0.0 | 9.9495 | 3.1543 |
No log | 4.0 | 8 | 9.4986 | 0.0 | -0.8493 | 0.0 | 9.4988 | 3.0820 |
No log | 5.0 | 10 | 6.6041 | -0.0037 | -0.7515 | 0.0085 | 6.6049 | 2.5700 |
No log | 6.0 | 12 | 6.6811 | 0.0144 | -0.8137 | -0.0241 | 6.6806 | 2.5847 |
No log | 7.0 | 14 | 4.7936 | 0.0051 | -0.6906 | 0.0211 | 4.7937 | 2.1894 |
No log | 8.0 | 16 | 3.6890 | 0.0031 | -0.7284 | 0.0039 | 3.6897 | 1.9209 |
No log | 9.0 | 18 | 2.9625 | 0.0031 | -0.7284 | 0.0039 | 2.9629 | 1.7213 |
No log | 10.0 | 20 | 2.2825 | 0.0375 | -0.2708 | 0.0713 | 2.2830 | 1.5110 |
No log | 11.0 | 22 | 1.7107 | -0.0023 | -0.2679 | 0.0361 | 1.7113 | 1.3082 |
No log | 12.0 | 24 | 1.5328 | 0.0077 | -0.2822 | 0.0268 | 1.5334 | 1.2383 |
No log | 13.0 | 26 | 1.1126 | 0.0019 | -0.2885 | 0.0213 | 1.1130 | 1.0550 |
No log | 14.0 | 28 | 0.9343 | 0.0099 | -0.2528 | 0.0286 | 0.9347 | 0.9668 |
No log | 15.0 | 30 | 1.0945 | 0.0403 | -0.1429 | 0.0703 | 1.0951 | 1.0465 |
No log | 16.0 | 32 | 0.8949 | 0.0910 | 0.0875 | 0.1570 | 0.8954 | 0.9463 |
No log | 17.0 | 34 | 0.7196 | 0.0847 | 0.2800 | 0.2880 | 0.7199 | 0.8485 |
No log | 18.0 | 36 | 0.6785 | 0.1669 | 0.4253 | 0.3972 | 0.6788 | 0.8239 |
No log | 19.0 | 38 | 0.9353 | 0.0834 | 0.0399 | 0.1830 | 0.9357 | 0.9673 |
No log | 20.0 | 40 | 0.6663 | 0.2074 | 0.4600 | 0.4454 | 0.6665 | 0.8164 |
No log | 21.0 | 42 | 0.6293 | 0.1670 | 0.4101 | 0.4102 | 0.6293 | 0.7933 |
No log | 22.0 | 44 | 0.7201 | 0.1480 | 0.3191 | 0.3502 | 0.7201 | 0.8486 |
No log | 23.0 | 46 | 0.7950 | 0.1589 | 0.2945 | 0.3688 | 0.7950 | 0.8916 |
No log | 24.0 | 48 | 0.8493 | 0.1760 | 0.4220 | 0.4799 | 0.8494 | 0.9216 |
No log | 25.0 | 50 | 0.6508 | 0.2350 | 0.5358 | 0.5766 | 0.6508 | 0.8067 |
No log | 26.0 | 52 | 0.6383 | 0.2318 | 0.4965 | 0.5382 | 0.6385 | 0.7990 |
No log | 27.0 | 54 | 0.7376 | 0.1910 | 0.3921 | 0.4543 | 0.7379 | 0.8590 |
No log | 28.0 | 56 | 0.4943 | 0.2212 | 0.4891 | 0.4950 | 0.4943 | 0.7031 |
No log | 29.0 | 58 | 0.5398 | 0.2343 | 0.5046 | 0.4943 | 0.5400 | 0.7348 |
No log | 30.0 | 60 | 1.1495 | 0.0557 | -0.1583 | 0.1291 | 1.1499 | 1.0723 |
No log | 31.0 | 62 | 1.3284 | 0.0366 | -0.1900 | 0.1163 | 1.3289 | 1.1528 |
No log | 32.0 | 64 | 1.1032 | 0.0597 | -0.1612 | 0.1255 | 1.1036 | 1.0505 |
No log | 33.0 | 66 | 0.6629 | 0.1659 | 0.3846 | 0.4176 | 0.6633 | 0.8144 |
No log | 34.0 | 68 | 0.5792 | 0.1300 | 0.3775 | 0.4239 | 0.5791 | 0.7610 |
No log | 35.0 | 70 | 0.5951 | 0.2046 | 0.4271 | 0.4911 | 0.5949 | 0.7713 |
No log | 36.0 | 72 | 0.5759 | 0.2207 | 0.4681 | 0.4985 | 0.5760 | 0.7589 |
No log | 37.0 | 74 | 1.4122 | 0.0350 | 0.0482 | 0.2925 | 1.4125 | 1.1885 |
No log | 38.0 | 76 | 1.4282 | 0.0338 | 0.0383 | 0.2883 | 1.4284 | 1.1952 |
No log | 39.0 | 78 | 0.8152 | 0.1789 | 0.3651 | 0.4589 | 0.8153 | 0.9029 |
No log | 40.0 | 80 | 0.5022 | 0.2409 | 0.5870 | 0.6120 | 0.5020 | 0.7085 |
No log | 41.0 | 82 | 0.5191 | 0.2445 | 0.5527 | 0.5812 | 0.5190 | 0.7204 |
No log | 42.0 | 84 | 0.9344 | 0.1513 | 0.2424 | 0.3849 | 0.9346 | 0.9667 |
No log | 43.0 | 86 | 1.1275 | 0.0678 | 0.0851 | 0.3026 | 1.1277 | 1.0619 |
No log | 44.0 | 88 | 0.8308 | 0.1440 | 0.3246 | 0.4292 | 0.8309 | 0.9115 |
No log | 45.0 | 90 | 0.4983 | 0.2713 | 0.5618 | 0.5826 | 0.4982 | 0.7059 |
No log | 46.0 | 92 | 0.5774 | 0.2181 | 0.4987 | 0.5680 | 0.5771 | 0.7597 |
No log | 47.0 | 94 | 0.5246 | 0.2205 | 0.5210 | 0.5722 | 0.5245 | 0.7242 |
No log | 48.0 | 96 | 0.7050 | 0.1544 | 0.3860 | 0.4484 | 0.7051 | 0.8397 |
No log | 49.0 | 98 | 1.2352 | 0.0598 | 0.0348 | 0.2697 | 1.2352 | 1.1114 |
No log | 50.0 | 100 | 1.4866 | 0.0042 | -0.0368 | 0.2387 | 1.4867 | 1.2193 |
No log | 51.0 | 102 | 1.3744 | 0.0308 | 0.0093 | 0.2606 | 1.3744 | 1.1723 |
No log | 52.0 | 104 | 0.9605 | 0.1383 | 0.2746 | 0.3969 | 0.9604 | 0.9800 |
No log | 53.0 | 106 | 0.5690 | 0.2417 | 0.5454 | 0.5844 | 0.5688 | 0.7542 |
No log | 54.0 | 108 | 0.6415 | 0.1839 | 0.4684 | 0.5420 | 0.6413 | 0.8008 |
No log | 55.0 | 110 | 0.6878 | 0.1446 | 0.4398 | 0.5261 | 0.6876 | 0.8292 |
No log | 56.0 | 112 | 0.5938 | 0.2095 | 0.5135 | 0.5669 | 0.5936 | 0.7704 |
No log | 57.0 | 114 | 0.8847 | 0.1548 | 0.2842 | 0.3888 | 0.8845 | 0.9405 |
No log | 58.0 | 116 | 1.2858 | 0.0710 | 0.0533 | 0.2848 | 1.2858 | 1.1339 |
No log | 59.0 | 118 | 1.1605 | 0.0934 | 0.1134 | 0.3070 | 1.1605 | 1.0773 |
No log | 60.0 | 120 | 0.7612 | 0.1882 | 0.3337 | 0.4131 | 0.7612 | 0.8725 |
No log | 61.0 | 122 | 0.6327 | 0.2089 | 0.3985 | 0.4643 | 0.6327 | 0.7954 |
No log | 62.0 | 124 | 0.6697 | 0.1903 | 0.3661 | 0.4368 | 0.6697 | 0.8183 |
No log | 63.0 | 126 | 0.7832 | 0.1741 | 0.3306 | 0.4135 | 0.7833 | 0.8850 |
No log | 64.0 | 128 | 0.8755 | 0.1347 | 0.2540 | 0.3681 | 0.8756 | 0.9357 |
No log | 65.0 | 130 | 0.8553 | 0.1380 | 0.2681 | 0.3662 | 0.8554 | 0.9249 |
No log | 66.0 | 132 | 0.7031 | 0.1933 | 0.3778 | 0.4450 | 0.7032 | 0.8386 |
No log | 67.0 | 134 | 0.6951 | 0.1784 | 0.3883 | 0.4630 | 0.6953 | 0.8338 |
No log | 68.0 | 136 | 0.7833 | 0.1635 | 0.3269 | 0.4090 | 0.7835 | 0.8851 |
No log | 69.0 | 138 | 1.1226 | 0.0895 | 0.1364 | 0.3031 | 1.1227 | 1.0596 |
No log | 70.0 | 140 | 1.4026 | 0.0514 | -0.0342 | 0.2167 | 1.4028 | 1.1844 |
No log | 71.0 | 142 | 1.3493 | 0.0559 | -0.0015 | 0.2321 | 1.3494 | 1.1616 |
No log | 72.0 | 144 | 1.0388 | 0.1075 | 0.1767 | 0.3192 | 1.0389 | 1.0193 |
No log | 73.0 | 146 | 0.7402 | 0.1650 | 0.3715 | 0.4393 | 0.7403 | 0.8604 |
No log | 74.0 | 148 | 0.6865 | 0.1610 | 0.3686 | 0.4522 | 0.6866 | 0.8286 |
No log | 75.0 | 150 | 0.6860 | 0.1645 | 0.3978 | 0.4826 | 0.6862 | 0.8283 |
Framework versions
- Transformers 4.51.1
- Pytorch 2.5.1+cu124
- Datasets 3.5.0
- Tokenizers 0.21.0
- Downloads last month
- 4
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for genki10/fold_2
Base model
google-bert/bert-base-uncased