fold_1

This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.7100
  • Unbiased Gwet Ac1: 0.0591
  • Unbiased Kripp Alpha: -0.0282
  • Qwk: 0.0425
  • Mse: 1.7082
  • Rmse: 1.3070

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Unbiased Gwet Ac1 Unbiased Kripp Alpha Qwk Mse Rmse
No log 1.0 2 10.8915 -0.0076 -0.7285 0.0179 10.8884 3.2998
No log 2.0 4 7.3303 0.0 -0.8443 0.0 7.3281 2.7070
No log 3.0 6 6.2423 0.0 -0.8443 0.0 6.2400 2.4980
No log 4.0 8 5.7437 0.0122 -0.7745 -0.0336 5.7415 2.3961
No log 5.0 10 5.0574 0.0 -0.7268 0.0 5.0552 2.2484
No log 6.0 12 4.4212 0.0 -0.7268 0.0 4.4191 2.1022
No log 7.0 14 4.2088 0.0 -0.7268 0.0 4.2068 2.0510
No log 8.0 16 3.5900 0.0 -0.7268 0.0 3.5881 1.8942
No log 9.0 18 3.0096 0.0 -0.7268 0.0 3.0076 1.7342
No log 10.0 20 2.5027 0.0 -0.7268 0.0 2.5009 1.5814
No log 11.0 22 2.0334 0.0291 -0.1314 0.0957 2.0316 1.4253
No log 12.0 24 1.7063 0.0235 -0.1427 0.0899 1.7046 1.3056
No log 13.0 26 1.5234 0.0177 -0.1791 0.0645 1.5219 1.2337
No log 14.0 28 1.5443 0.0165 -0.1890 0.0545 1.5429 1.2421
No log 15.0 30 1.1074 0.0177 -0.1791 0.0645 1.1060 1.0517
No log 16.0 32 1.1227 0.0177 -0.1791 0.0645 1.1213 1.0589
No log 17.0 34 0.8893 0.0603 0.1916 0.1967 0.8881 0.9424
No log 18.0 36 1.1833 -0.0934 -0.3027 -0.1458 1.1820 1.0872
No log 19.0 38 1.2590 -0.0713 -0.3140 -0.1316 1.2576 1.1214
No log 20.0 40 0.8762 -0.0115 0.0242 0.1128 0.8752 0.9355
No log 21.0 42 0.8402 0.1462 0.2549 0.2978 0.8389 0.9159
No log 22.0 44 0.9614 0.0753 0.0261 0.1933 0.9599 0.9798
No log 23.0 46 0.9663 0.0703 0.0305 0.2006 0.9648 0.9822
No log 24.0 48 0.6612 0.1609 0.4418 0.4523 0.6601 0.8124
No log 25.0 50 0.6863 0.0904 0.2893 0.3795 0.6856 0.8280
No log 26.0 52 0.6445 0.1006 0.3049 0.4069 0.6437 0.8023
No log 27.0 54 0.5540 0.1808 0.4119 0.4941 0.5531 0.7437
No log 28.0 56 0.5439 0.2765 0.5587 0.5732 0.5429 0.7368
No log 29.0 58 0.9548 0.1684 0.3407 0.4440 0.9535 0.9765
No log 30.0 60 0.7077 0.2661 0.5353 0.5733 0.7065 0.8406
No log 31.0 62 0.5210 0.2015 0.4444 0.5164 0.5203 0.7213
No log 32.0 64 0.5295 0.1812 0.4253 0.4922 0.5287 0.7271
No log 33.0 66 0.5641 0.2798 0.5255 0.5482 0.5632 0.7504
No log 34.0 68 1.0915 0.0778 0.1774 0.3259 1.0899 1.0440
No log 35.0 70 0.6484 0.2691 0.5017 0.5240 0.6474 0.8046
No log 36.0 72 0.6547 0.2406 0.4895 0.5198 0.6537 0.8085
No log 37.0 74 1.6375 0.0208 0.0213 0.2301 1.6357 1.2789
No log 38.0 76 1.7421 0.0072 -0.0190 0.1991 1.7401 1.3191
No log 39.0 78 1.0599 0.1110 0.2301 0.3167 1.0585 1.0288
No log 40.0 80 0.7534 0.1786 0.3713 0.4117 0.7523 0.8673
No log 41.0 82 0.8205 0.1488 0.3097 0.3548 0.8194 0.9052
No log 42.0 84 1.1338 0.0678 0.1985 0.2827 1.1323 1.0641
No log 43.0 86 1.2388 0.0719 0.1103 0.2200 1.2372 1.1123
No log 44.0 88 0.8093 0.1132 0.2959 0.3527 0.8084 0.8991
No log 45.0 90 0.8057 0.1062 0.2952 0.3631 0.8049 0.8971
No log 46.0 92 1.0124 0.0730 0.1542 0.2288 1.0110 1.0055
No log 47.0 94 1.5629 0.0810 -0.0076 0.1562 1.5610 1.2494
No log 48.0 96 1.5855 0.0832 -0.0055 0.1572 1.5836 1.2584
No log 49.0 98 1.1875 0.0837 0.1227 0.2147 1.1860 1.0890
No log 50.0 100 0.9652 0.0875 0.2460 0.3200 0.9642 0.9819
No log 51.0 102 0.9583 0.1133 0.2615 0.3269 0.9574 0.9785
No log 52.0 104 0.8415 0.0861 0.3031 0.3630 0.8409 0.9170
No log 53.0 106 0.8424 0.0763 0.2911 0.3466 0.8418 0.9175
No log 54.0 108 0.8857 0.0790 0.2826 0.3195 0.8849 0.9407
No log 55.0 110 1.2987 0.0468 0.0430 0.1428 1.2971 1.1389
No log 56.0 112 1.5208 0.0640 -0.0532 0.0941 1.5189 1.2325
No log 57.0 114 1.2407 0.0343 -0.0006 0.1061 1.2391 1.1131
No log 58.0 116 0.9848 0.0440 0.0882 0.1198 0.9834 0.9917
No log 59.0 118 0.9037 -0.0001 0.1169 0.1476 0.9026 0.9500
No log 60.0 120 1.0132 -0.0246 0.0849 0.1295 1.0122 1.0061
No log 61.0 122 1.1968 -0.0100 0.0831 0.1093 1.1957 1.0935
No log 62.0 124 1.6235 0.0293 -0.0217 0.0333 1.6218 1.2735
No log 63.0 126 1.7100 0.0591 -0.0282 0.0425 1.7082 1.3070

Framework versions

  • Transformers 4.51.1
  • Pytorch 2.5.1+cu124
  • Datasets 3.5.0
  • Tokenizers 0.21.0
Downloads last month
4
Safetensors
Model size
109M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for genki10/fold_1

Finetuned
(5578)
this model