fold_1
This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.7100
- Unbiased Gwet Ac1: 0.0591
- Unbiased Kripp Alpha: -0.0282
- Qwk: 0.0425
- Mse: 1.7082
- Rmse: 1.3070
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Unbiased Gwet Ac1 | Unbiased Kripp Alpha | Qwk | Mse | Rmse |
---|---|---|---|---|---|---|---|---|
No log | 1.0 | 2 | 10.8915 | -0.0076 | -0.7285 | 0.0179 | 10.8884 | 3.2998 |
No log | 2.0 | 4 | 7.3303 | 0.0 | -0.8443 | 0.0 | 7.3281 | 2.7070 |
No log | 3.0 | 6 | 6.2423 | 0.0 | -0.8443 | 0.0 | 6.2400 | 2.4980 |
No log | 4.0 | 8 | 5.7437 | 0.0122 | -0.7745 | -0.0336 | 5.7415 | 2.3961 |
No log | 5.0 | 10 | 5.0574 | 0.0 | -0.7268 | 0.0 | 5.0552 | 2.2484 |
No log | 6.0 | 12 | 4.4212 | 0.0 | -0.7268 | 0.0 | 4.4191 | 2.1022 |
No log | 7.0 | 14 | 4.2088 | 0.0 | -0.7268 | 0.0 | 4.2068 | 2.0510 |
No log | 8.0 | 16 | 3.5900 | 0.0 | -0.7268 | 0.0 | 3.5881 | 1.8942 |
No log | 9.0 | 18 | 3.0096 | 0.0 | -0.7268 | 0.0 | 3.0076 | 1.7342 |
No log | 10.0 | 20 | 2.5027 | 0.0 | -0.7268 | 0.0 | 2.5009 | 1.5814 |
No log | 11.0 | 22 | 2.0334 | 0.0291 | -0.1314 | 0.0957 | 2.0316 | 1.4253 |
No log | 12.0 | 24 | 1.7063 | 0.0235 | -0.1427 | 0.0899 | 1.7046 | 1.3056 |
No log | 13.0 | 26 | 1.5234 | 0.0177 | -0.1791 | 0.0645 | 1.5219 | 1.2337 |
No log | 14.0 | 28 | 1.5443 | 0.0165 | -0.1890 | 0.0545 | 1.5429 | 1.2421 |
No log | 15.0 | 30 | 1.1074 | 0.0177 | -0.1791 | 0.0645 | 1.1060 | 1.0517 |
No log | 16.0 | 32 | 1.1227 | 0.0177 | -0.1791 | 0.0645 | 1.1213 | 1.0589 |
No log | 17.0 | 34 | 0.8893 | 0.0603 | 0.1916 | 0.1967 | 0.8881 | 0.9424 |
No log | 18.0 | 36 | 1.1833 | -0.0934 | -0.3027 | -0.1458 | 1.1820 | 1.0872 |
No log | 19.0 | 38 | 1.2590 | -0.0713 | -0.3140 | -0.1316 | 1.2576 | 1.1214 |
No log | 20.0 | 40 | 0.8762 | -0.0115 | 0.0242 | 0.1128 | 0.8752 | 0.9355 |
No log | 21.0 | 42 | 0.8402 | 0.1462 | 0.2549 | 0.2978 | 0.8389 | 0.9159 |
No log | 22.0 | 44 | 0.9614 | 0.0753 | 0.0261 | 0.1933 | 0.9599 | 0.9798 |
No log | 23.0 | 46 | 0.9663 | 0.0703 | 0.0305 | 0.2006 | 0.9648 | 0.9822 |
No log | 24.0 | 48 | 0.6612 | 0.1609 | 0.4418 | 0.4523 | 0.6601 | 0.8124 |
No log | 25.0 | 50 | 0.6863 | 0.0904 | 0.2893 | 0.3795 | 0.6856 | 0.8280 |
No log | 26.0 | 52 | 0.6445 | 0.1006 | 0.3049 | 0.4069 | 0.6437 | 0.8023 |
No log | 27.0 | 54 | 0.5540 | 0.1808 | 0.4119 | 0.4941 | 0.5531 | 0.7437 |
No log | 28.0 | 56 | 0.5439 | 0.2765 | 0.5587 | 0.5732 | 0.5429 | 0.7368 |
No log | 29.0 | 58 | 0.9548 | 0.1684 | 0.3407 | 0.4440 | 0.9535 | 0.9765 |
No log | 30.0 | 60 | 0.7077 | 0.2661 | 0.5353 | 0.5733 | 0.7065 | 0.8406 |
No log | 31.0 | 62 | 0.5210 | 0.2015 | 0.4444 | 0.5164 | 0.5203 | 0.7213 |
No log | 32.0 | 64 | 0.5295 | 0.1812 | 0.4253 | 0.4922 | 0.5287 | 0.7271 |
No log | 33.0 | 66 | 0.5641 | 0.2798 | 0.5255 | 0.5482 | 0.5632 | 0.7504 |
No log | 34.0 | 68 | 1.0915 | 0.0778 | 0.1774 | 0.3259 | 1.0899 | 1.0440 |
No log | 35.0 | 70 | 0.6484 | 0.2691 | 0.5017 | 0.5240 | 0.6474 | 0.8046 |
No log | 36.0 | 72 | 0.6547 | 0.2406 | 0.4895 | 0.5198 | 0.6537 | 0.8085 |
No log | 37.0 | 74 | 1.6375 | 0.0208 | 0.0213 | 0.2301 | 1.6357 | 1.2789 |
No log | 38.0 | 76 | 1.7421 | 0.0072 | -0.0190 | 0.1991 | 1.7401 | 1.3191 |
No log | 39.0 | 78 | 1.0599 | 0.1110 | 0.2301 | 0.3167 | 1.0585 | 1.0288 |
No log | 40.0 | 80 | 0.7534 | 0.1786 | 0.3713 | 0.4117 | 0.7523 | 0.8673 |
No log | 41.0 | 82 | 0.8205 | 0.1488 | 0.3097 | 0.3548 | 0.8194 | 0.9052 |
No log | 42.0 | 84 | 1.1338 | 0.0678 | 0.1985 | 0.2827 | 1.1323 | 1.0641 |
No log | 43.0 | 86 | 1.2388 | 0.0719 | 0.1103 | 0.2200 | 1.2372 | 1.1123 |
No log | 44.0 | 88 | 0.8093 | 0.1132 | 0.2959 | 0.3527 | 0.8084 | 0.8991 |
No log | 45.0 | 90 | 0.8057 | 0.1062 | 0.2952 | 0.3631 | 0.8049 | 0.8971 |
No log | 46.0 | 92 | 1.0124 | 0.0730 | 0.1542 | 0.2288 | 1.0110 | 1.0055 |
No log | 47.0 | 94 | 1.5629 | 0.0810 | -0.0076 | 0.1562 | 1.5610 | 1.2494 |
No log | 48.0 | 96 | 1.5855 | 0.0832 | -0.0055 | 0.1572 | 1.5836 | 1.2584 |
No log | 49.0 | 98 | 1.1875 | 0.0837 | 0.1227 | 0.2147 | 1.1860 | 1.0890 |
No log | 50.0 | 100 | 0.9652 | 0.0875 | 0.2460 | 0.3200 | 0.9642 | 0.9819 |
No log | 51.0 | 102 | 0.9583 | 0.1133 | 0.2615 | 0.3269 | 0.9574 | 0.9785 |
No log | 52.0 | 104 | 0.8415 | 0.0861 | 0.3031 | 0.3630 | 0.8409 | 0.9170 |
No log | 53.0 | 106 | 0.8424 | 0.0763 | 0.2911 | 0.3466 | 0.8418 | 0.9175 |
No log | 54.0 | 108 | 0.8857 | 0.0790 | 0.2826 | 0.3195 | 0.8849 | 0.9407 |
No log | 55.0 | 110 | 1.2987 | 0.0468 | 0.0430 | 0.1428 | 1.2971 | 1.1389 |
No log | 56.0 | 112 | 1.5208 | 0.0640 | -0.0532 | 0.0941 | 1.5189 | 1.2325 |
No log | 57.0 | 114 | 1.2407 | 0.0343 | -0.0006 | 0.1061 | 1.2391 | 1.1131 |
No log | 58.0 | 116 | 0.9848 | 0.0440 | 0.0882 | 0.1198 | 0.9834 | 0.9917 |
No log | 59.0 | 118 | 0.9037 | -0.0001 | 0.1169 | 0.1476 | 0.9026 | 0.9500 |
No log | 60.0 | 120 | 1.0132 | -0.0246 | 0.0849 | 0.1295 | 1.0122 | 1.0061 |
No log | 61.0 | 122 | 1.1968 | -0.0100 | 0.0831 | 0.1093 | 1.1957 | 1.0935 |
No log | 62.0 | 124 | 1.6235 | 0.0293 | -0.0217 | 0.0333 | 1.6218 | 1.2735 |
No log | 63.0 | 126 | 1.7100 | 0.0591 | -0.0282 | 0.0425 | 1.7082 | 1.3070 |
Framework versions
- Transformers 4.51.1
- Pytorch 2.5.1+cu124
- Datasets 3.5.0
- Tokenizers 0.21.0
- Downloads last month
- 4
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for genki10/fold_1
Base model
google-bert/bert-base-uncased