fold_0
This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.7257
- Unbiased Gwet Ac1: 0.2005
- Unbiased Kripp Alpha: 0.4220
- Qwk: 0.4537
- Mse: 0.7257
- Rmse: 0.8519
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Unbiased Gwet Ac1 | Unbiased Kripp Alpha | Qwk | Mse | Rmse |
---|---|---|---|---|---|---|---|---|
No log | 1.0 | 2 | 9.3224 | 0.0 | -0.8522 | 0.0 | 9.3224 | 3.0533 |
No log | 2.0 | 4 | 8.4963 | 0.0 | -0.8522 | 0.0 | 8.4963 | 2.9148 |
No log | 3.0 | 6 | 6.8286 | 0.0 | -0.8522 | 0.0 | 6.8286 | 2.6132 |
No log | 4.0 | 8 | 5.6993 | -0.0046 | -0.7051 | 0.0316 | 5.6993 | 2.3873 |
No log | 5.0 | 10 | 4.6042 | 0.0090 | -0.7520 | 0.0115 | 4.6042 | 2.1457 |
No log | 6.0 | 12 | 3.8284 | 0.0030 | -0.7687 | 0.0039 | 3.8284 | 1.9566 |
No log | 7.0 | 14 | 3.1647 | 0.0 | -0.7771 | 0.0 | 3.1647 | 1.7790 |
No log | 8.0 | 16 | 2.7221 | 0.0 | -0.7771 | 0.0 | 2.7221 | 1.6499 |
No log | 9.0 | 18 | 2.3650 | -0.0062 | -0.1858 | 0.1200 | 2.3650 | 1.5378 |
No log | 10.0 | 20 | 1.9570 | 0.0040 | -0.2959 | 0.0316 | 1.9570 | 1.3989 |
No log | 11.0 | 22 | 1.5558 | 0.0040 | -0.2959 | 0.0316 | 1.5558 | 1.2473 |
No log | 12.0 | 24 | 1.2613 | 0.0040 | -0.2959 | 0.0316 | 1.2613 | 1.1231 |
No log | 13.0 | 26 | 1.1105 | 0.0040 | -0.2959 | 0.0316 | 1.1105 | 1.0538 |
No log | 14.0 | 28 | 1.1261 | 0.0040 | -0.2959 | 0.0316 | 1.1261 | 1.0612 |
No log | 15.0 | 30 | 0.9340 | 0.0287 | -0.2019 | 0.0629 | 0.9340 | 0.9664 |
No log | 16.0 | 32 | 0.7898 | 0.1477 | 0.3779 | 0.3711 | 0.7898 | 0.8887 |
No log | 17.0 | 34 | 0.7760 | 0.1637 | 0.3636 | 0.3483 | 0.7760 | 0.8809 |
No log | 18.0 | 36 | 0.9018 | 0.1017 | 0.0431 | 0.1820 | 0.9018 | 0.9496 |
No log | 19.0 | 38 | 0.7286 | 0.1959 | 0.4185 | 0.4151 | 0.7286 | 0.8536 |
No log | 20.0 | 40 | 0.5712 | 0.1956 | 0.4242 | 0.4338 | 0.5712 | 0.7558 |
No log | 21.0 | 42 | 0.9187 | 0.1151 | 0.3136 | 0.3674 | 0.9187 | 0.9585 |
No log | 22.0 | 44 | 0.9177 | 0.1130 | 0.3389 | 0.3952 | 0.9177 | 0.9580 |
No log | 23.0 | 46 | 0.5279 | 0.1905 | 0.3940 | 0.4395 | 0.5279 | 0.7265 |
No log | 24.0 | 48 | 0.5443 | 0.1463 | 0.3361 | 0.3972 | 0.5443 | 0.7377 |
No log | 25.0 | 50 | 0.6213 | 0.2684 | 0.4825 | 0.4858 | 0.6213 | 0.7882 |
No log | 26.0 | 52 | 0.6193 | 0.1786 | 0.3848 | 0.4269 | 0.6193 | 0.7870 |
No log | 27.0 | 54 | 0.6122 | 0.0921 | 0.2514 | 0.3470 | 0.6122 | 0.7825 |
No log | 28.0 | 56 | 0.6808 | 0.0785 | 0.2263 | 0.3334 | 0.6808 | 0.8251 |
No log | 29.0 | 58 | 0.6123 | 0.1147 | 0.2885 | 0.3678 | 0.6123 | 0.7825 |
No log | 30.0 | 60 | 0.5252 | 0.2216 | 0.4340 | 0.4683 | 0.5252 | 0.7247 |
No log | 31.0 | 62 | 0.7128 | 0.1836 | 0.4512 | 0.4701 | 0.7128 | 0.8443 |
No log | 32.0 | 64 | 0.7461 | 0.1652 | 0.4316 | 0.4571 | 0.7461 | 0.8638 |
No log | 33.0 | 66 | 0.5773 | 0.1935 | 0.4372 | 0.4619 | 0.5773 | 0.7598 |
No log | 34.0 | 68 | 0.6495 | 0.1757 | 0.3733 | 0.4448 | 0.6495 | 0.8059 |
No log | 35.0 | 70 | 0.7579 | 0.1544 | 0.3724 | 0.4569 | 0.7579 | 0.8706 |
No log | 36.0 | 72 | 0.7860 | 0.1118 | 0.3041 | 0.4048 | 0.7860 | 0.8865 |
No log | 37.0 | 74 | 0.7672 | 0.1347 | 0.3655 | 0.4537 | 0.7672 | 0.8759 |
No log | 38.0 | 76 | 0.6904 | 0.1750 | 0.3771 | 0.4540 | 0.6904 | 0.8309 |
No log | 39.0 | 78 | 0.6266 | 0.1754 | 0.4103 | 0.4700 | 0.6266 | 0.7916 |
No log | 40.0 | 80 | 0.6285 | 0.2001 | 0.4478 | 0.5096 | 0.6285 | 0.7928 |
No log | 41.0 | 82 | 0.5839 | 0.2061 | 0.4706 | 0.5007 | 0.5839 | 0.7641 |
No log | 42.0 | 84 | 0.6171 | 0.1988 | 0.4569 | 0.4767 | 0.6171 | 0.7856 |
No log | 43.0 | 86 | 0.6589 | 0.2099 | 0.4405 | 0.4607 | 0.6589 | 0.8117 |
No log | 44.0 | 88 | 0.6384 | 0.2255 | 0.4378 | 0.4559 | 0.6384 | 0.7990 |
No log | 45.0 | 90 | 0.5937 | 0.2001 | 0.4571 | 0.5036 | 0.5937 | 0.7705 |
No log | 46.0 | 92 | 0.6509 | 0.2014 | 0.4448 | 0.5178 | 0.6509 | 0.8068 |
No log | 47.0 | 94 | 0.7105 | 0.1674 | 0.4020 | 0.4304 | 0.7105 | 0.8429 |
No log | 48.0 | 96 | 0.8152 | 0.1525 | 0.3370 | 0.3724 | 0.8152 | 0.9029 |
No log | 49.0 | 98 | 0.7114 | 0.1453 | 0.3471 | 0.4335 | 0.7114 | 0.8434 |
No log | 50.0 | 100 | 0.8984 | 0.1138 | 0.2238 | 0.3973 | 0.8984 | 0.9478 |
No log | 51.0 | 102 | 0.8349 | 0.1447 | 0.2919 | 0.4351 | 0.8349 | 0.9138 |
No log | 52.0 | 104 | 0.6250 | 0.2248 | 0.4395 | 0.5089 | 0.6250 | 0.7906 |
No log | 53.0 | 106 | 0.6989 | 0.1902 | 0.4233 | 0.4535 | 0.6989 | 0.8360 |
No log | 54.0 | 108 | 0.8627 | 0.1583 | 0.3213 | 0.3775 | 0.8627 | 0.9288 |
No log | 55.0 | 110 | 0.7257 | 0.2005 | 0.4220 | 0.4537 | 0.7257 | 0.8519 |
Framework versions
- Transformers 4.51.1
- Pytorch 2.5.1+cu124
- Datasets 3.5.0
- Tokenizers 0.21.0
- Downloads last month
- 4
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for genki10/fold_0
Base model
google-bert/bert-base-uncased