fold_0

This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7257
  • Unbiased Gwet Ac1: 0.2005
  • Unbiased Kripp Alpha: 0.4220
  • Qwk: 0.4537
  • Mse: 0.7257
  • Rmse: 0.8519

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Unbiased Gwet Ac1 Unbiased Kripp Alpha Qwk Mse Rmse
No log 1.0 2 9.3224 0.0 -0.8522 0.0 9.3224 3.0533
No log 2.0 4 8.4963 0.0 -0.8522 0.0 8.4963 2.9148
No log 3.0 6 6.8286 0.0 -0.8522 0.0 6.8286 2.6132
No log 4.0 8 5.6993 -0.0046 -0.7051 0.0316 5.6993 2.3873
No log 5.0 10 4.6042 0.0090 -0.7520 0.0115 4.6042 2.1457
No log 6.0 12 3.8284 0.0030 -0.7687 0.0039 3.8284 1.9566
No log 7.0 14 3.1647 0.0 -0.7771 0.0 3.1647 1.7790
No log 8.0 16 2.7221 0.0 -0.7771 0.0 2.7221 1.6499
No log 9.0 18 2.3650 -0.0062 -0.1858 0.1200 2.3650 1.5378
No log 10.0 20 1.9570 0.0040 -0.2959 0.0316 1.9570 1.3989
No log 11.0 22 1.5558 0.0040 -0.2959 0.0316 1.5558 1.2473
No log 12.0 24 1.2613 0.0040 -0.2959 0.0316 1.2613 1.1231
No log 13.0 26 1.1105 0.0040 -0.2959 0.0316 1.1105 1.0538
No log 14.0 28 1.1261 0.0040 -0.2959 0.0316 1.1261 1.0612
No log 15.0 30 0.9340 0.0287 -0.2019 0.0629 0.9340 0.9664
No log 16.0 32 0.7898 0.1477 0.3779 0.3711 0.7898 0.8887
No log 17.0 34 0.7760 0.1637 0.3636 0.3483 0.7760 0.8809
No log 18.0 36 0.9018 0.1017 0.0431 0.1820 0.9018 0.9496
No log 19.0 38 0.7286 0.1959 0.4185 0.4151 0.7286 0.8536
No log 20.0 40 0.5712 0.1956 0.4242 0.4338 0.5712 0.7558
No log 21.0 42 0.9187 0.1151 0.3136 0.3674 0.9187 0.9585
No log 22.0 44 0.9177 0.1130 0.3389 0.3952 0.9177 0.9580
No log 23.0 46 0.5279 0.1905 0.3940 0.4395 0.5279 0.7265
No log 24.0 48 0.5443 0.1463 0.3361 0.3972 0.5443 0.7377
No log 25.0 50 0.6213 0.2684 0.4825 0.4858 0.6213 0.7882
No log 26.0 52 0.6193 0.1786 0.3848 0.4269 0.6193 0.7870
No log 27.0 54 0.6122 0.0921 0.2514 0.3470 0.6122 0.7825
No log 28.0 56 0.6808 0.0785 0.2263 0.3334 0.6808 0.8251
No log 29.0 58 0.6123 0.1147 0.2885 0.3678 0.6123 0.7825
No log 30.0 60 0.5252 0.2216 0.4340 0.4683 0.5252 0.7247
No log 31.0 62 0.7128 0.1836 0.4512 0.4701 0.7128 0.8443
No log 32.0 64 0.7461 0.1652 0.4316 0.4571 0.7461 0.8638
No log 33.0 66 0.5773 0.1935 0.4372 0.4619 0.5773 0.7598
No log 34.0 68 0.6495 0.1757 0.3733 0.4448 0.6495 0.8059
No log 35.0 70 0.7579 0.1544 0.3724 0.4569 0.7579 0.8706
No log 36.0 72 0.7860 0.1118 0.3041 0.4048 0.7860 0.8865
No log 37.0 74 0.7672 0.1347 0.3655 0.4537 0.7672 0.8759
No log 38.0 76 0.6904 0.1750 0.3771 0.4540 0.6904 0.8309
No log 39.0 78 0.6266 0.1754 0.4103 0.4700 0.6266 0.7916
No log 40.0 80 0.6285 0.2001 0.4478 0.5096 0.6285 0.7928
No log 41.0 82 0.5839 0.2061 0.4706 0.5007 0.5839 0.7641
No log 42.0 84 0.6171 0.1988 0.4569 0.4767 0.6171 0.7856
No log 43.0 86 0.6589 0.2099 0.4405 0.4607 0.6589 0.8117
No log 44.0 88 0.6384 0.2255 0.4378 0.4559 0.6384 0.7990
No log 45.0 90 0.5937 0.2001 0.4571 0.5036 0.5937 0.7705
No log 46.0 92 0.6509 0.2014 0.4448 0.5178 0.6509 0.8068
No log 47.0 94 0.7105 0.1674 0.4020 0.4304 0.7105 0.8429
No log 48.0 96 0.8152 0.1525 0.3370 0.3724 0.8152 0.9029
No log 49.0 98 0.7114 0.1453 0.3471 0.4335 0.7114 0.8434
No log 50.0 100 0.8984 0.1138 0.2238 0.3973 0.8984 0.9478
No log 51.0 102 0.8349 0.1447 0.2919 0.4351 0.8349 0.9138
No log 52.0 104 0.6250 0.2248 0.4395 0.5089 0.6250 0.7906
No log 53.0 106 0.6989 0.1902 0.4233 0.4535 0.6989 0.8360
No log 54.0 108 0.8627 0.1583 0.3213 0.3775 0.8627 0.9288
No log 55.0 110 0.7257 0.2005 0.4220 0.4537 0.7257 0.8519

Framework versions

  • Transformers 4.51.1
  • Pytorch 2.5.1+cu124
  • Datasets 3.5.0
  • Tokenizers 0.21.0
Downloads last month
4
Safetensors
Model size
109M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for genki10/fold_0

Finetuned
(5578)
this model