Version_weird_ASAP_FineTuningBERT_AugV12_k4_task1_organization_k4_k4_fold3

This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2919
  • Qwk: 0.5117
  • Mse: 1.2915
  • Rmse: 1.1365

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Qwk Mse Rmse
No log 1.0 2 11.1127 0.0096 11.1108 3.3333
No log 2.0 4 9.7402 0.0 9.7383 3.1206
No log 3.0 6 8.6794 0.0 8.6776 2.9458
No log 4.0 8 7.6563 0.0 7.6546 2.7667
No log 5.0 10 6.2389 0.0113 6.2375 2.4975
No log 6.0 12 4.8836 0.0110 4.8824 2.2096
No log 7.0 14 4.4741 0.0 4.4728 2.1149
No log 8.0 16 2.7779 0.0067 2.7770 1.6664
No log 9.0 18 2.5292 -0.0208 2.5283 1.5901
No log 10.0 20 2.2690 0.1246 2.2681 1.5060
No log 11.0 22 2.2322 0.1028 2.2314 1.4938
No log 12.0 24 1.4297 0.0102 1.4291 1.1955
No log 13.0 26 1.0374 0.0202 1.0369 1.0183
No log 14.0 28 0.9199 0.3044 0.9194 0.9589
No log 15.0 30 0.8441 0.1125 0.8436 0.9185
No log 16.0 32 0.8408 0.0553 0.8405 0.9168
No log 17.0 34 0.8872 0.0468 0.8869 0.9417
No log 18.0 36 1.1041 0.0454 1.1039 1.0507
No log 19.0 38 1.2496 0.1184 1.2494 1.1178
No log 20.0 40 1.3955 0.1701 1.3953 1.1812
No log 21.0 42 1.4742 0.1279 1.4741 1.2141
No log 22.0 44 1.8307 0.1136 1.8306 1.3530
No log 23.0 46 1.8743 0.1540 1.8744 1.3691
No log 24.0 48 1.3418 0.2499 1.3421 1.1585
No log 25.0 50 1.4000 0.3122 1.4002 1.1833
No log 26.0 52 0.7883 0.4514 0.7886 0.8880
No log 27.0 54 0.8842 0.4562 0.8845 0.9405
No log 28.0 56 0.8091 0.4782 0.8095 0.8997
No log 29.0 58 0.8671 0.5193 0.8674 0.9314
No log 30.0 60 1.1537 0.4649 1.1538 1.0741
No log 31.0 62 0.8885 0.5334 0.8885 0.9426
No log 32.0 64 0.6855 0.5952 0.6856 0.8280
No log 33.0 66 0.8459 0.5718 0.8458 0.9197
No log 34.0 68 1.3321 0.4741 1.3317 1.1540
No log 35.0 70 1.0430 0.5254 1.0428 1.0212
No log 36.0 72 0.8966 0.5762 0.8966 0.9469
No log 37.0 74 0.9836 0.5639 0.9835 0.9917
No log 38.0 76 1.2988 0.5030 1.2984 1.1395
No log 39.0 78 1.3520 0.4863 1.3516 1.1626
No log 40.0 80 0.9535 0.5621 0.9534 0.9764
No log 41.0 82 0.9675 0.5621 0.9673 0.9835
No log 42.0 84 1.1669 0.5255 1.1667 1.0801
No log 43.0 86 1.0110 0.5385 1.0108 1.0054
No log 44.0 88 1.1482 0.5155 1.1481 1.0715
No log 45.0 90 1.3793 0.4934 1.3790 1.1743
No log 46.0 92 1.3271 0.4976 1.3267 1.1518
No log 47.0 94 1.0184 0.5481 1.0183 1.0091
No log 48.0 96 0.9180 0.5581 0.9179 0.9581
No log 49.0 98 1.0982 0.5360 1.0980 1.0478
No log 50.0 100 1.1822 0.5233 1.1819 1.0871
No log 51.0 102 1.1085 0.5364 1.1082 1.0527
No log 52.0 104 1.2919 0.5117 1.2915 1.1365

Framework versions

  • Transformers 4.47.0
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
46
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for genki10/Version_weird_ASAP_FineTuningBERT_AugV12_k4_task1_organization_k4_k4_fold3

Finetuned
(4420)
this model