Version_weird_ASAP_FineTuningBERT_AugV12_k2_task1_organization_k2_k2_fold1

This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7647
  • Qwk: 0.6248
  • Mse: 0.7641
  • Rmse: 0.8741

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Qwk Mse Rmse
No log 1.0 1 12.9945 -0.0009 12.9914 3.6044
No log 2.0 2 10.6042 0.0048 10.6014 3.2560
No log 3.0 3 9.8705 0.0 9.8678 3.1413
No log 4.0 4 9.5081 0.0 9.5056 3.0831
No log 5.0 5 9.2023 0.0 9.1998 3.0331
No log 6.0 6 8.8690 0.0 8.8666 2.9777
No log 7.0 7 8.5012 0.0 8.4988 2.9153
No log 8.0 8 8.1227 0.0 8.1202 2.8496
No log 9.0 9 7.7550 0.0 7.7526 2.7843
No log 10.0 10 7.4029 0.0 7.4006 2.7204
No log 11.0 11 7.0634 0.0 7.0611 2.6573
No log 12.0 12 6.7269 0.0 6.7245 2.5932
No log 13.0 13 6.3840 0.0 6.3816 2.5262
No log 14.0 14 6.0262 0.0 6.0239 2.4544
No log 15.0 15 5.6446 0.0342 5.6423 2.3754
No log 16.0 16 5.2326 0.0040 5.2304 2.2870
No log 17.0 17 4.7840 0.0 4.7818 2.1867
No log 18.0 18 4.3190 0.0 4.3169 2.0777
No log 19.0 19 3.8879 0.0 3.8860 1.9713
No log 20.0 20 3.5515 0.0 3.5496 1.8840
No log 21.0 21 3.2951 0.0 3.2933 1.8148
No log 22.0 22 2.9814 0.0 2.9796 1.7262
No log 23.0 23 2.6569 0.0 2.6552 1.6295
No log 24.0 24 2.3989 0.0159 2.3972 1.5483
No log 25.0 25 2.2007 0.1583 2.1990 1.4829
No log 26.0 26 2.0202 0.0645 2.0185 1.4207
No log 27.0 27 1.8402 0.0315 1.8386 1.3559
No log 28.0 28 1.6671 0.0 1.6656 1.2906
No log 29.0 29 1.5086 0.0 1.5071 1.2277
No log 30.0 30 1.3819 0.0 1.3804 1.1749
No log 31.0 31 1.2597 0.0 1.2583 1.1217
No log 32.0 32 1.1573 0.0 1.1559 1.0751
No log 33.0 33 1.0691 0.0106 1.0677 1.0333
No log 34.0 34 0.9995 0.0106 0.9981 0.9991
No log 35.0 35 0.9420 0.0106 0.9407 0.9699
No log 36.0 36 0.8797 0.0418 0.8785 0.9373
No log 37.0 37 0.8129 0.4000 0.8117 0.9009
No log 38.0 38 0.7496 0.4294 0.7484 0.8651
No log 39.0 39 0.7153 0.3948 0.7141 0.8451
No log 40.0 40 0.6790 0.4081 0.6779 0.8233
No log 41.0 41 0.6233 0.4693 0.6220 0.7887
No log 42.0 42 0.6096 0.4565 0.6085 0.7801
No log 43.0 43 0.6074 0.4305 0.6063 0.7787
No log 44.0 44 0.6055 0.4463 0.6045 0.7775
No log 45.0 45 0.6127 0.4553 0.6116 0.7821
No log 46.0 46 0.6533 0.4316 0.6523 0.8076
No log 47.0 47 0.5886 0.5032 0.5876 0.7665
No log 48.0 48 0.5901 0.5080 0.5891 0.7675
No log 49.0 49 0.5596 0.5159 0.5586 0.7474
No log 50.0 50 0.5856 0.5195 0.5846 0.7646
No log 51.0 51 0.5563 0.5180 0.5553 0.7452
No log 52.0 52 0.4964 0.5587 0.4953 0.7038
No log 53.0 53 0.6097 0.5822 0.6089 0.7803
No log 54.0 54 0.6799 0.5524 0.6791 0.8241
No log 55.0 55 0.6005 0.6163 0.5997 0.7744
No log 56.0 56 0.5423 0.6463 0.5415 0.7359
No log 57.0 57 0.6460 0.5882 0.6453 0.8033
No log 58.0 58 0.6955 0.5639 0.6948 0.8336
No log 59.0 59 0.6869 0.5781 0.6863 0.8284
No log 60.0 60 0.7373 0.5690 0.7367 0.8583
No log 61.0 61 0.7946 0.5518 0.7940 0.8910
No log 62.0 62 0.7015 0.5925 0.7009 0.8372
No log 63.0 63 0.5553 0.6544 0.5544 0.7446
No log 64.0 64 0.6278 0.6355 0.6271 0.7919
No log 65.0 65 0.8951 0.5447 0.8945 0.9458
No log 66.0 66 0.9335 0.5336 0.9329 0.9658
No log 67.0 67 0.7709 0.6001 0.7703 0.8777
No log 68.0 68 0.5875 0.6481 0.5867 0.7659
No log 69.0 69 0.6085 0.6299 0.6076 0.7795
No log 70.0 70 0.8306 0.5881 0.8299 0.9110
No log 71.0 71 1.1352 0.5027 1.1346 1.0652
No log 72.0 72 1.1640 0.5027 1.1634 1.0786
No log 73.0 73 0.9588 0.5623 0.9583 0.9789
No log 74.0 74 0.6794 0.6233 0.6787 0.8238
No log 75.0 75 0.6297 0.6394 0.6290 0.7931
No log 76.0 76 0.7217 0.6124 0.7210 0.8491
No log 77.0 77 0.9711 0.5719 0.9706 0.9852
No log 78.0 78 1.1204 0.5343 1.1200 1.0583
No log 79.0 79 1.1497 0.5340 1.1493 1.0720
No log 80.0 80 1.0188 0.5704 1.0184 1.0091
No log 81.0 81 0.7888 0.6257 0.7882 0.8878
No log 82.0 82 0.7215 0.6283 0.7208 0.8490
No log 83.0 83 0.7647 0.6248 0.7641 0.8741

Framework versions

  • Transformers 4.47.0
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
30
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for genki10/Version_weird_ASAP_FineTuningBERT_AugV12_k2_task1_organization_k2_k2_fold1

Finetuned
(4422)
this model