Version_weird_ASAP_FineTuningBERT_AugV12_k2_task1_organization_k2_k2_fold1
This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.7647
- Qwk: 0.6248
- Mse: 0.7641
- Rmse: 0.8741
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse |
---|---|---|---|---|---|---|
No log | 1.0 | 1 | 12.9945 | -0.0009 | 12.9914 | 3.6044 |
No log | 2.0 | 2 | 10.6042 | 0.0048 | 10.6014 | 3.2560 |
No log | 3.0 | 3 | 9.8705 | 0.0 | 9.8678 | 3.1413 |
No log | 4.0 | 4 | 9.5081 | 0.0 | 9.5056 | 3.0831 |
No log | 5.0 | 5 | 9.2023 | 0.0 | 9.1998 | 3.0331 |
No log | 6.0 | 6 | 8.8690 | 0.0 | 8.8666 | 2.9777 |
No log | 7.0 | 7 | 8.5012 | 0.0 | 8.4988 | 2.9153 |
No log | 8.0 | 8 | 8.1227 | 0.0 | 8.1202 | 2.8496 |
No log | 9.0 | 9 | 7.7550 | 0.0 | 7.7526 | 2.7843 |
No log | 10.0 | 10 | 7.4029 | 0.0 | 7.4006 | 2.7204 |
No log | 11.0 | 11 | 7.0634 | 0.0 | 7.0611 | 2.6573 |
No log | 12.0 | 12 | 6.7269 | 0.0 | 6.7245 | 2.5932 |
No log | 13.0 | 13 | 6.3840 | 0.0 | 6.3816 | 2.5262 |
No log | 14.0 | 14 | 6.0262 | 0.0 | 6.0239 | 2.4544 |
No log | 15.0 | 15 | 5.6446 | 0.0342 | 5.6423 | 2.3754 |
No log | 16.0 | 16 | 5.2326 | 0.0040 | 5.2304 | 2.2870 |
No log | 17.0 | 17 | 4.7840 | 0.0 | 4.7818 | 2.1867 |
No log | 18.0 | 18 | 4.3190 | 0.0 | 4.3169 | 2.0777 |
No log | 19.0 | 19 | 3.8879 | 0.0 | 3.8860 | 1.9713 |
No log | 20.0 | 20 | 3.5515 | 0.0 | 3.5496 | 1.8840 |
No log | 21.0 | 21 | 3.2951 | 0.0 | 3.2933 | 1.8148 |
No log | 22.0 | 22 | 2.9814 | 0.0 | 2.9796 | 1.7262 |
No log | 23.0 | 23 | 2.6569 | 0.0 | 2.6552 | 1.6295 |
No log | 24.0 | 24 | 2.3989 | 0.0159 | 2.3972 | 1.5483 |
No log | 25.0 | 25 | 2.2007 | 0.1583 | 2.1990 | 1.4829 |
No log | 26.0 | 26 | 2.0202 | 0.0645 | 2.0185 | 1.4207 |
No log | 27.0 | 27 | 1.8402 | 0.0315 | 1.8386 | 1.3559 |
No log | 28.0 | 28 | 1.6671 | 0.0 | 1.6656 | 1.2906 |
No log | 29.0 | 29 | 1.5086 | 0.0 | 1.5071 | 1.2277 |
No log | 30.0 | 30 | 1.3819 | 0.0 | 1.3804 | 1.1749 |
No log | 31.0 | 31 | 1.2597 | 0.0 | 1.2583 | 1.1217 |
No log | 32.0 | 32 | 1.1573 | 0.0 | 1.1559 | 1.0751 |
No log | 33.0 | 33 | 1.0691 | 0.0106 | 1.0677 | 1.0333 |
No log | 34.0 | 34 | 0.9995 | 0.0106 | 0.9981 | 0.9991 |
No log | 35.0 | 35 | 0.9420 | 0.0106 | 0.9407 | 0.9699 |
No log | 36.0 | 36 | 0.8797 | 0.0418 | 0.8785 | 0.9373 |
No log | 37.0 | 37 | 0.8129 | 0.4000 | 0.8117 | 0.9009 |
No log | 38.0 | 38 | 0.7496 | 0.4294 | 0.7484 | 0.8651 |
No log | 39.0 | 39 | 0.7153 | 0.3948 | 0.7141 | 0.8451 |
No log | 40.0 | 40 | 0.6790 | 0.4081 | 0.6779 | 0.8233 |
No log | 41.0 | 41 | 0.6233 | 0.4693 | 0.6220 | 0.7887 |
No log | 42.0 | 42 | 0.6096 | 0.4565 | 0.6085 | 0.7801 |
No log | 43.0 | 43 | 0.6074 | 0.4305 | 0.6063 | 0.7787 |
No log | 44.0 | 44 | 0.6055 | 0.4463 | 0.6045 | 0.7775 |
No log | 45.0 | 45 | 0.6127 | 0.4553 | 0.6116 | 0.7821 |
No log | 46.0 | 46 | 0.6533 | 0.4316 | 0.6523 | 0.8076 |
No log | 47.0 | 47 | 0.5886 | 0.5032 | 0.5876 | 0.7665 |
No log | 48.0 | 48 | 0.5901 | 0.5080 | 0.5891 | 0.7675 |
No log | 49.0 | 49 | 0.5596 | 0.5159 | 0.5586 | 0.7474 |
No log | 50.0 | 50 | 0.5856 | 0.5195 | 0.5846 | 0.7646 |
No log | 51.0 | 51 | 0.5563 | 0.5180 | 0.5553 | 0.7452 |
No log | 52.0 | 52 | 0.4964 | 0.5587 | 0.4953 | 0.7038 |
No log | 53.0 | 53 | 0.6097 | 0.5822 | 0.6089 | 0.7803 |
No log | 54.0 | 54 | 0.6799 | 0.5524 | 0.6791 | 0.8241 |
No log | 55.0 | 55 | 0.6005 | 0.6163 | 0.5997 | 0.7744 |
No log | 56.0 | 56 | 0.5423 | 0.6463 | 0.5415 | 0.7359 |
No log | 57.0 | 57 | 0.6460 | 0.5882 | 0.6453 | 0.8033 |
No log | 58.0 | 58 | 0.6955 | 0.5639 | 0.6948 | 0.8336 |
No log | 59.0 | 59 | 0.6869 | 0.5781 | 0.6863 | 0.8284 |
No log | 60.0 | 60 | 0.7373 | 0.5690 | 0.7367 | 0.8583 |
No log | 61.0 | 61 | 0.7946 | 0.5518 | 0.7940 | 0.8910 |
No log | 62.0 | 62 | 0.7015 | 0.5925 | 0.7009 | 0.8372 |
No log | 63.0 | 63 | 0.5553 | 0.6544 | 0.5544 | 0.7446 |
No log | 64.0 | 64 | 0.6278 | 0.6355 | 0.6271 | 0.7919 |
No log | 65.0 | 65 | 0.8951 | 0.5447 | 0.8945 | 0.9458 |
No log | 66.0 | 66 | 0.9335 | 0.5336 | 0.9329 | 0.9658 |
No log | 67.0 | 67 | 0.7709 | 0.6001 | 0.7703 | 0.8777 |
No log | 68.0 | 68 | 0.5875 | 0.6481 | 0.5867 | 0.7659 |
No log | 69.0 | 69 | 0.6085 | 0.6299 | 0.6076 | 0.7795 |
No log | 70.0 | 70 | 0.8306 | 0.5881 | 0.8299 | 0.9110 |
No log | 71.0 | 71 | 1.1352 | 0.5027 | 1.1346 | 1.0652 |
No log | 72.0 | 72 | 1.1640 | 0.5027 | 1.1634 | 1.0786 |
No log | 73.0 | 73 | 0.9588 | 0.5623 | 0.9583 | 0.9789 |
No log | 74.0 | 74 | 0.6794 | 0.6233 | 0.6787 | 0.8238 |
No log | 75.0 | 75 | 0.6297 | 0.6394 | 0.6290 | 0.7931 |
No log | 76.0 | 76 | 0.7217 | 0.6124 | 0.7210 | 0.8491 |
No log | 77.0 | 77 | 0.9711 | 0.5719 | 0.9706 | 0.9852 |
No log | 78.0 | 78 | 1.1204 | 0.5343 | 1.1200 | 1.0583 |
No log | 79.0 | 79 | 1.1497 | 0.5340 | 1.1493 | 1.0720 |
No log | 80.0 | 80 | 1.0188 | 0.5704 | 1.0184 | 1.0091 |
No log | 81.0 | 81 | 0.7888 | 0.6257 | 0.7882 | 0.8878 |
No log | 82.0 | 82 | 0.7215 | 0.6283 | 0.7208 | 0.8490 |
No log | 83.0 | 83 | 0.7647 | 0.6248 | 0.7641 | 0.8741 |
Framework versions
- Transformers 4.47.0
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 30
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for genki10/Version_weird_ASAP_FineTuningBERT_AugV12_k2_task1_organization_k2_k2_fold1
Base model
google-bert/bert-base-uncased