BERT_V8_sp10_lw40_ex100_lo50_k7_k7_fold4

This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5177
  • Qwk: 0.5782
  • Mse: 0.5177
  • Rmse: 0.7195

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Qwk Mse Rmse
No log 1.0 4 7.1697 0.0 7.1697 2.6776
No log 2.0 8 5.3751 0.0090 5.3751 2.3184
No log 3.0 12 3.7582 0.0040 3.7582 1.9386
No log 4.0 16 2.2137 0.1420 2.2137 1.4879
No log 5.0 20 1.3653 0.0107 1.3653 1.1685
No log 6.0 24 1.0163 0.0107 1.0163 1.0081
No log 7.0 28 0.8223 0.2236 0.8223 0.9068
No log 8.0 32 0.6480 0.3986 0.6480 0.8050
No log 9.0 36 0.7958 0.4648 0.7958 0.8921
No log 10.0 40 0.5216 0.5131 0.5216 0.7222
No log 11.0 44 1.0154 0.4034 1.0154 1.0077
No log 12.0 48 0.5674 0.5171 0.5674 0.7532
No log 13.0 52 1.1029 0.4372 1.1029 1.0502
No log 14.0 56 0.6530 0.5470 0.6530 0.8081
No log 15.0 60 0.5819 0.5441 0.5819 0.7628
No log 16.0 64 0.7779 0.5024 0.7779 0.8820
No log 17.0 68 0.5471 0.5878 0.5471 0.7397
No log 18.0 72 0.5176 0.6038 0.5176 0.7195
No log 19.0 76 0.6601 0.5165 0.6601 0.8125
No log 20.0 80 0.5787 0.6124 0.5787 0.7607
No log 21.0 84 0.5214 0.6173 0.5214 0.7221
No log 22.0 88 0.5008 0.6244 0.5008 0.7076
No log 23.0 92 0.5051 0.6270 0.5051 0.7107
No log 24.0 96 0.5532 0.5571 0.5532 0.7438
No log 25.0 100 0.6777 0.5217 0.6777 0.8232
No log 26.0 104 0.5681 0.6268 0.5681 0.7537
No log 27.0 108 0.5558 0.5669 0.5558 0.7455
No log 28.0 112 0.5692 0.5637 0.5692 0.7544
No log 29.0 116 0.5192 0.5930 0.5192 0.7206
No log 30.0 120 0.5157 0.6063 0.5157 0.7181
No log 31.0 124 0.5222 0.5851 0.5222 0.7226
No log 32.0 128 0.5304 0.5964 0.5304 0.7283
No log 33.0 132 0.5591 0.5907 0.5591 0.7477
No log 34.0 136 0.5311 0.5845 0.5311 0.7287
No log 35.0 140 0.5083 0.5820 0.5083 0.7129
No log 36.0 144 0.5273 0.5753 0.5273 0.7261
No log 37.0 148 0.5238 0.6247 0.5238 0.7237
No log 38.0 152 0.5506 0.5770 0.5506 0.7421
No log 39.0 156 0.5044 0.5981 0.5044 0.7102
No log 40.0 160 0.5823 0.5518 0.5823 0.7631
No log 41.0 164 0.5361 0.6167 0.5361 0.7322
No log 42.0 168 0.5310 0.6142 0.5310 0.7287
No log 43.0 172 0.5645 0.5635 0.5645 0.7513
No log 44.0 176 0.5060 0.6033 0.5060 0.7113
No log 45.0 180 0.5616 0.5474 0.5616 0.7494
No log 46.0 184 0.5153 0.5990 0.5153 0.7178
No log 47.0 188 0.5607 0.5689 0.5607 0.7488
No log 48.0 192 0.5215 0.5977 0.5215 0.7221
No log 49.0 196 0.5649 0.5657 0.5649 0.7516
No log 50.0 200 0.5058 0.5880 0.5058 0.7112
No log 51.0 204 0.5078 0.5969 0.5078 0.7126
No log 52.0 208 0.5540 0.5582 0.5540 0.7443
No log 53.0 212 0.5177 0.5782 0.5177 0.7195

Framework versions

  • Transformers 4.51.1
  • Pytorch 2.5.1+cu124
  • Datasets 3.5.0
  • Tokenizers 0.21.0
Downloads last month
4
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for genki10/BERT_V8_sp10_lw40_ex100_lo50_k7_k7_fold4

Finetuned
(5578)
this model