BERT_V8_sp10_lw40_ex100_lo50_k7_k7_fold4
This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.5177
- Qwk: 0.5782
- Mse: 0.5177
- Rmse: 0.7195
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse |
---|---|---|---|---|---|---|
No log | 1.0 | 4 | 7.1697 | 0.0 | 7.1697 | 2.6776 |
No log | 2.0 | 8 | 5.3751 | 0.0090 | 5.3751 | 2.3184 |
No log | 3.0 | 12 | 3.7582 | 0.0040 | 3.7582 | 1.9386 |
No log | 4.0 | 16 | 2.2137 | 0.1420 | 2.2137 | 1.4879 |
No log | 5.0 | 20 | 1.3653 | 0.0107 | 1.3653 | 1.1685 |
No log | 6.0 | 24 | 1.0163 | 0.0107 | 1.0163 | 1.0081 |
No log | 7.0 | 28 | 0.8223 | 0.2236 | 0.8223 | 0.9068 |
No log | 8.0 | 32 | 0.6480 | 0.3986 | 0.6480 | 0.8050 |
No log | 9.0 | 36 | 0.7958 | 0.4648 | 0.7958 | 0.8921 |
No log | 10.0 | 40 | 0.5216 | 0.5131 | 0.5216 | 0.7222 |
No log | 11.0 | 44 | 1.0154 | 0.4034 | 1.0154 | 1.0077 |
No log | 12.0 | 48 | 0.5674 | 0.5171 | 0.5674 | 0.7532 |
No log | 13.0 | 52 | 1.1029 | 0.4372 | 1.1029 | 1.0502 |
No log | 14.0 | 56 | 0.6530 | 0.5470 | 0.6530 | 0.8081 |
No log | 15.0 | 60 | 0.5819 | 0.5441 | 0.5819 | 0.7628 |
No log | 16.0 | 64 | 0.7779 | 0.5024 | 0.7779 | 0.8820 |
No log | 17.0 | 68 | 0.5471 | 0.5878 | 0.5471 | 0.7397 |
No log | 18.0 | 72 | 0.5176 | 0.6038 | 0.5176 | 0.7195 |
No log | 19.0 | 76 | 0.6601 | 0.5165 | 0.6601 | 0.8125 |
No log | 20.0 | 80 | 0.5787 | 0.6124 | 0.5787 | 0.7607 |
No log | 21.0 | 84 | 0.5214 | 0.6173 | 0.5214 | 0.7221 |
No log | 22.0 | 88 | 0.5008 | 0.6244 | 0.5008 | 0.7076 |
No log | 23.0 | 92 | 0.5051 | 0.6270 | 0.5051 | 0.7107 |
No log | 24.0 | 96 | 0.5532 | 0.5571 | 0.5532 | 0.7438 |
No log | 25.0 | 100 | 0.6777 | 0.5217 | 0.6777 | 0.8232 |
No log | 26.0 | 104 | 0.5681 | 0.6268 | 0.5681 | 0.7537 |
No log | 27.0 | 108 | 0.5558 | 0.5669 | 0.5558 | 0.7455 |
No log | 28.0 | 112 | 0.5692 | 0.5637 | 0.5692 | 0.7544 |
No log | 29.0 | 116 | 0.5192 | 0.5930 | 0.5192 | 0.7206 |
No log | 30.0 | 120 | 0.5157 | 0.6063 | 0.5157 | 0.7181 |
No log | 31.0 | 124 | 0.5222 | 0.5851 | 0.5222 | 0.7226 |
No log | 32.0 | 128 | 0.5304 | 0.5964 | 0.5304 | 0.7283 |
No log | 33.0 | 132 | 0.5591 | 0.5907 | 0.5591 | 0.7477 |
No log | 34.0 | 136 | 0.5311 | 0.5845 | 0.5311 | 0.7287 |
No log | 35.0 | 140 | 0.5083 | 0.5820 | 0.5083 | 0.7129 |
No log | 36.0 | 144 | 0.5273 | 0.5753 | 0.5273 | 0.7261 |
No log | 37.0 | 148 | 0.5238 | 0.6247 | 0.5238 | 0.7237 |
No log | 38.0 | 152 | 0.5506 | 0.5770 | 0.5506 | 0.7421 |
No log | 39.0 | 156 | 0.5044 | 0.5981 | 0.5044 | 0.7102 |
No log | 40.0 | 160 | 0.5823 | 0.5518 | 0.5823 | 0.7631 |
No log | 41.0 | 164 | 0.5361 | 0.6167 | 0.5361 | 0.7322 |
No log | 42.0 | 168 | 0.5310 | 0.6142 | 0.5310 | 0.7287 |
No log | 43.0 | 172 | 0.5645 | 0.5635 | 0.5645 | 0.7513 |
No log | 44.0 | 176 | 0.5060 | 0.6033 | 0.5060 | 0.7113 |
No log | 45.0 | 180 | 0.5616 | 0.5474 | 0.5616 | 0.7494 |
No log | 46.0 | 184 | 0.5153 | 0.5990 | 0.5153 | 0.7178 |
No log | 47.0 | 188 | 0.5607 | 0.5689 | 0.5607 | 0.7488 |
No log | 48.0 | 192 | 0.5215 | 0.5977 | 0.5215 | 0.7221 |
No log | 49.0 | 196 | 0.5649 | 0.5657 | 0.5649 | 0.7516 |
No log | 50.0 | 200 | 0.5058 | 0.5880 | 0.5058 | 0.7112 |
No log | 51.0 | 204 | 0.5078 | 0.5969 | 0.5078 | 0.7126 |
No log | 52.0 | 208 | 0.5540 | 0.5582 | 0.5540 | 0.7443 |
No log | 53.0 | 212 | 0.5177 | 0.5782 | 0.5177 | 0.7195 |
Framework versions
- Transformers 4.51.1
- Pytorch 2.5.1+cu124
- Datasets 3.5.0
- Tokenizers 0.21.0
- Downloads last month
- 4
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for genki10/BERT_V8_sp10_lw40_ex100_lo50_k7_k7_fold4
Base model
google-bert/bert-base-uncased