BERT_V8_sp10_lw20_ex200_lo100_k3_k3_fold2

This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0056
  • Qwk: 0.3282
  • Mse: 1.0055
  • Rmse: 1.0028

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Qwk Mse Rmse
No log 1.0 2 10.4622 0.0163 10.4628 3.2346
No log 2.0 4 6.7688 0.0 6.7689 2.6017
No log 3.0 6 6.1475 -0.0020 6.1477 2.4795
No log 4.0 8 5.3116 0.0102 5.3120 2.3048
No log 5.0 10 4.3619 0.0039 4.3623 2.0886
No log 6.0 12 3.6627 0.0 3.6632 1.9140
No log 7.0 14 3.0070 0.0 3.0075 1.7342
No log 8.0 16 2.4049 0.0331 2.4054 1.5509
No log 9.0 18 2.0182 0.0189 2.0188 1.4209
No log 10.0 20 1.4963 0.0280 1.4968 1.2235
No log 11.0 22 1.2464 0.0107 1.2469 1.1167
No log 12.0 24 0.9570 0.0213 0.9574 0.9785
No log 13.0 26 0.8150 0.3739 0.8153 0.9030
No log 14.0 28 0.8564 0.1086 0.8568 0.9256
No log 15.0 30 0.7775 0.4449 0.7775 0.8818
No log 16.0 32 0.7468 0.5013 0.7467 0.8641
No log 17.0 34 0.8792 0.0836 0.8796 0.9379
No log 18.0 36 0.5846 0.4503 0.5845 0.7645
No log 19.0 38 0.5783 0.4806 0.5781 0.7604
No log 20.0 40 0.8705 0.1218 0.8709 0.9332
No log 21.0 42 0.9332 0.0368 0.9337 0.9663
No log 22.0 44 0.5711 0.4025 0.5708 0.7555
No log 23.0 46 0.5777 0.4185 0.5774 0.7599
No log 24.0 48 0.7281 0.3066 0.7281 0.8533
No log 25.0 50 0.6965 0.3927 0.6963 0.8344
No log 26.0 52 1.0714 0.3609 1.0709 1.0348
No log 27.0 54 0.7052 0.4 0.7051 0.8397
No log 28.0 56 0.6946 0.3442 0.6945 0.8334
No log 29.0 58 0.6313 0.4280 0.6308 0.7942
No log 30.0 60 0.7233 0.3680 0.7233 0.8504
No log 31.0 62 0.7028 0.4460 0.7024 0.8381
No log 32.0 64 0.8469 0.4730 0.8461 0.9198
No log 33.0 66 0.7176 0.4802 0.7170 0.8468
No log 34.0 68 0.8306 0.3269 0.8306 0.9114
No log 35.0 70 0.6809 0.4958 0.6802 0.8248
No log 36.0 72 0.6984 0.5127 0.6976 0.8352
No log 37.0 74 0.7714 0.4242 0.7712 0.8782
No log 38.0 76 0.7812 0.3929 0.7810 0.8838
No log 39.0 78 0.6830 0.5125 0.6823 0.8260
No log 40.0 80 0.6968 0.5117 0.6962 0.8344
No log 41.0 82 0.9363 0.3224 0.9361 0.9675
No log 42.0 84 0.9321 0.3175 0.9322 0.9655
No log 43.0 86 0.8141 0.5017 0.8133 0.9018
No log 44.0 88 0.7837 0.4769 0.7831 0.8849
No log 45.0 90 0.9317 0.3448 0.9318 0.9653
No log 46.0 92 0.9740 0.2709 0.9739 0.9869
No log 47.0 94 0.8248 0.4128 0.8243 0.9079
No log 48.0 96 0.9863 0.2800 0.9865 0.9932
No log 49.0 98 0.8704 0.3435 0.8704 0.9330
No log 50.0 100 0.7633 0.4705 0.7627 0.8733
No log 51.0 102 0.7719 0.4656 0.7714 0.8783
No log 52.0 104 0.8499 0.4076 0.8499 0.9219
No log 53.0 106 0.7772 0.4320 0.7769 0.8814
No log 54.0 108 0.8962 0.3712 0.8961 0.9466
No log 55.0 110 0.8803 0.3640 0.8803 0.9383
No log 56.0 112 0.8137 0.3875 0.8135 0.9019
No log 57.0 114 0.8070 0.4169 0.8067 0.8982
No log 58.0 116 0.7858 0.4799 0.7852 0.8861
No log 59.0 118 0.8167 0.4461 0.8161 0.9034
No log 60.0 120 0.8647 0.3987 0.8643 0.9297
No log 61.0 122 0.8598 0.4299 0.8593 0.9270
No log 62.0 124 0.9330 0.3689 0.9329 0.9659
No log 63.0 126 0.9015 0.3940 0.9013 0.9494
No log 64.0 128 0.8413 0.4617 0.8408 0.9169
No log 65.0 130 0.8875 0.4311 0.8872 0.9419
No log 66.0 132 1.0056 0.3282 1.0055 1.0028

Framework versions

  • Transformers 4.47.0
  • Pytorch 2.5.1+cu121
  • Datasets 3.3.1
  • Tokenizers 0.21.0
Downloads last month
328
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for genki10/BERT_V8_sp10_lw20_ex200_lo100_k3_k3_fold2

Finetuned
(4688)
this model