metadata
datasets:
- genbio-ai/transcript_isoform_expression_prediction
base_model:
- genbio-ai/AIDO.RNA-1.6B-CDS
- EleutherAI/enformer-official-rough
- facebook/esm2_t30_150M_UR50D
metrics:
- spearmanr
- r_squared
tags:
- biology
Tri-modal model for RNA isoform expression prediction
RNA isoform expression prediction
- Input: dna_seq, rna_seq, protein_seq
- Output: expression level in 30 tissues
Model architecture
- Backbones:
- DNA: Enformer (fully finetuning)
- RNA: AIDO.RNA-1.6B-CDS (lora finetuning)
- Protein: ESM2-150M (lora finetuning)
- Fusion method: concat fusion
Usage
Download model
from huggingface_hub import snapshot_download
from pathlib import Path
model_name = "genbio-ai/AIDO.MM-Enformer-RNA-1.6B-CDS-ESM2-150M-ConcatFusion-rna-isoform-expression-ckpt"
genbio_models_path = Path.home().joinpath('genbio_models', model_name)
genbio_models_path.mkdir(parents=True, exist_ok=True)
snapshot_download(repo_id=model_name, local_dir=genbio_models_path)
Evaluation script
Once you download the model, you can use the model in ModelGenertor using the following script:
CONFIG_FILE=... # put the config file path here
CKPT_PATH=... # put the model checkpoint path here
mgen test --config $CONFIG_FILE \
--data.batch_size 16 \
--trainer.logger null \
--model.strict_loading False \
--model.reset_optimizer_states True \
--ckpt_path $CKPT_PATH