|
--- |
|
datasets: |
|
- genbio-ai/transcript_isoform_expression_prediction |
|
metrics: |
|
- spearmanr |
|
- r_squared |
|
base_model: |
|
- genbio-ai/AIDO.RNA-1.6B-CDS |
|
- EleutherAI/enformer-official-rough |
|
tags: |
|
- biology |
|
--- |
|
# Bi-modal model for RNA isoform expression prediction |
|
|
|
## RNA isoform expression prediction |
|
* Input: dna_seq, rna_seq |
|
* Output: expression level in 30 tissues |
|
|
|
|
|
## Model architecture |
|
* Backbones: |
|
* DNA: Enformer (fully finetuning) |
|
* RNA: AIDO.RNA-1.6B-CDS (lora finetuning) |
|
* Fusion method: concat fusion |
|
|
|
|
|
## Usage |
|
|
|
**Download model** |
|
```python |
|
from huggingface_hub import snapshot_download |
|
from pathlib import Path |
|
|
|
model_name = "genbio-ai/AIDO.MM-Enformer-RNA-1.6B-CDS-ConcatFusion-rna-isoform-expression-ckpt" |
|
genbio_models_path = Path.home().joinpath('genbio_models', model_name) |
|
genbio_models_path.mkdir(parents=True, exist_ok=True) |
|
snapshot_download(repo_id=model_name, local_dir=genbio_models_path) |
|
``` |
|
|
|
**Evaluation script** |
|
|
|
Once you download the model, you can use the model in [ModelGenertor](https://github.com/genbio-ai/ModelGenerator) using the following script: |
|
```bash |
|
CONFIG_FILE=... # put the config file path here |
|
CKPT_PATH=... # put the model checkpoint path here |
|
|
|
mgen test --config $CONFIG_FILE \ |
|
--data.batch_size 16 \ |
|
--trainer.logger null \ |
|
--model.strict_loading False \ |
|
--model.reset_optimizer_states True \ |
|
--ckpt_path $CKPT_PATH |
|
``` |