See axolotl config
axolotl version: 0.11.0.dev0
base_model: /workspace/data/models/mistral-small-3.2-24B-instruct-2506-text-only
load_in_4bit: true
#chat_template: mistral_v7_tekken
chat_template_strategy: tokenizer
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
#tokenizer_use_mistral_common: true
trust_remote_code: true
datasets:
- path: data/tutu2f.jsonl
type: chat_template
field_messages: messages
message_property_mappings:
role: role
content: content
roles:
user: ["user"]
assistant: ["assistant"]
system: ["system"]
dataset_prepared_path: last_run_prepared
output_dir: outputs/Mistral-Small-3.2-24B-Unslop-v2.0
adapter: qlora
sequence_len: 5120
pad_to_sequence_len: false
lora_r: 32
lora_alpha: 32
lora_dropout: 0.1
lora_target_linear: true
gradient_accumulation_steps: 4
micro_batch_size: 4
num_epochs: 1
optimizer: paged_adamw_32bit
lr_scheduler: cosine
learning_rate: 2e-6
bf16: auto
tf32: false
gradient_checkpointing: true
logging_steps: 5
flash_attention: false
warmup_ratio: 0.05
weight_decay: 0.0
save_steps: 100
save_safetensors: true
do_causal_lm_eval: true
eval_steps: 100
eval_causal_lm_metrics: ["sacrebleu", "perplexity"]
max_grad_norm: 1.0
outputs/Mistral-Small-3.2-24B-Unslop-v2.0
This model was trained from scratch on the data/tutu2f.jsonl dataset.
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-06
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.PAGED_ADAMW with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 68
- training_steps: 1372
Training results
Framework versions
- PEFT 0.15.2
- Transformers 4.52.4
- Pytorch 2.7.1+cu128
- Datasets 3.6.0
- Tokenizers 0.21.1
- Downloads last month
- -
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for gecfdo/MS3.2-The-Omega-Directive-24B-Unslop-v2.0-EXL2-LoRA
Base model
mistralai/Mistral-Small-3.1-24B-Base-2503