|
--- |
|
language: it |
|
tags: |
|
- sentiment |
|
- Italian |
|
license: mit |
|
widget: |
|
- text: Giuseppe Rossi è un ottimo politico |
|
--- |
|
|
|
# 🤗 + polibert_SA - POLItic BERT based Sentiment Analysis |
|
|
|
## Model description |
|
|
|
This model performs sentiment analysis on Italian political twitter sentences. It was trained starting from an instance of "bert-base-italian-uncased-xxl" and fine-tuned on an Italian dataset of tweets. You can try it out at https://www.unideeplearning.com/twitter_sa/ (in italian!) |
|
|
|
#### Hands-on |
|
|
|
```python |
|
import torch |
|
from torch import nn |
|
from transformers import AutoTokenizer, AutoModelForSequenceClassification |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("unideeplearning/polibert_sa") |
|
model = AutoModelForSequenceClassification.from_pretrained("unideeplearning/polibert_sa") |
|
|
|
|
|
|
|
|
|
text = "Giuseppe Rossi è un pessimo politico" |
|
input_ids = tokenizer.encode(text, add_special_tokens=True, return_tensors= 'pt') |
|
|
|
logits, = model(input_ids) |
|
logits = logits.squeeze(0) |
|
|
|
prob = nn.functional.softmax(logits, dim=0) |
|
|
|
# 0 Negative, 1 Neutral, 2 Positive |
|
print(prob.argmax().tolist()) |
|
``` |
|
|
|
#### Hyperparameters |
|
|
|
- Optimizer: **AdamW** with learning rate of **2e-5**, epsilon of **1e-8** |
|
- Max epochs: **2** |
|
- Batch size: **16** |
|
|
|
## Acknowledgments |
|
|
|
Thanks to the support from: |
|
the [Hugging Face](https://huggingface.co/), https://www.unioneprofessionisti.com |
|
|
|
https://www.unideeplearning.com/ |
|
|