pubmed-abs-sub-05 / README.md
gayanin's picture
End of training
6849ddd
|
raw
history blame
2.72 kB
---
license: apache-2.0
base_model: facebook/bart-base
tags:
- generated_from_trainer
model-index:
- name: pubmed-abs-sub-05
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# pubmed-abs-sub-05
This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1618
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 10
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 0.4682 | 0.11 | 500 | 0.3839 |
| 0.3647 | 0.21 | 1000 | 0.3068 |
| 0.3853 | 0.32 | 1500 | 0.2709 |
| 0.3194 | 0.43 | 2000 | 0.2515 |
| 0.2892 | 0.54 | 2500 | 0.2369 |
| 0.2493 | 0.64 | 3000 | 0.2202 |
| 0.252 | 0.75 | 3500 | 0.2132 |
| 0.2467 | 0.86 | 4000 | 0.1982 |
| 0.2539 | 0.96 | 4500 | 0.1948 |
| 0.1639 | 1.07 | 5000 | 0.1917 |
| 0.1732 | 1.18 | 5500 | 0.1889 |
| 0.1593 | 1.28 | 6000 | 0.1932 |
| 0.1884 | 1.39 | 6500 | 0.1803 |
| 0.1889 | 1.5 | 7000 | 0.1804 |
| 0.1638 | 1.61 | 7500 | 0.1787 |
| 0.1295 | 1.71 | 8000 | 0.1754 |
| 0.2087 | 1.82 | 8500 | 0.1692 |
| 0.147 | 1.93 | 9000 | 0.1700 |
| 0.1269 | 2.03 | 9500 | 0.1725 |
| 0.1214 | 2.14 | 10000 | 0.1693 |
| 0.1124 | 2.25 | 10500 | 0.1717 |
| 0.1169 | 2.35 | 11000 | 0.1654 |
| 0.1136 | 2.46 | 11500 | 0.1658 |
| 0.1217 | 2.57 | 12000 | 0.1630 |
| 0.1287 | 2.68 | 12500 | 0.1631 |
| 0.0997 | 2.78 | 13000 | 0.1622 |
| 0.1094 | 2.89 | 13500 | 0.1623 |
| 0.1051 | 3.0 | 14000 | 0.1618 |
### Framework versions
- Transformers 4.34.1
- Pytorch 2.1.0
- Datasets 2.14.6
- Tokenizers 0.14.1