|
--- |
|
license: apache-2.0 |
|
base_model: facebook/bart-base |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: pubmed-abs-sub-02 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# pubmed-abs-sub-02 |
|
|
|
This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1162 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 10 |
|
- num_epochs: 3 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:-----:|:-----:|:---------------:| |
|
| 0.2641 | 0.11 | 500 | 0.2493 | |
|
| 0.2369 | 0.21 | 1000 | 0.1986 | |
|
| 0.2348 | 0.32 | 1500 | 0.1810 | |
|
| 0.2239 | 0.43 | 2000 | 0.1732 | |
|
| 0.1745 | 0.54 | 2500 | 0.1643 | |
|
| 0.1664 | 0.64 | 3000 | 0.1493 | |
|
| 0.1701 | 0.75 | 3500 | 0.1446 | |
|
| 0.2041 | 0.86 | 4000 | 0.1375 | |
|
| 0.1541 | 0.96 | 4500 | 0.1347 | |
|
| 0.1168 | 1.07 | 5000 | 0.1398 | |
|
| 0.1174 | 1.18 | 5500 | 0.1339 | |
|
| 0.1108 | 1.28 | 6000 | 0.1345 | |
|
| 0.1163 | 1.39 | 6500 | 0.1292 | |
|
| 0.1292 | 1.5 | 7000 | 0.1268 | |
|
| 0.0999 | 1.61 | 7500 | 0.1270 | |
|
| 0.1023 | 1.71 | 8000 | 0.1225 | |
|
| 0.123 | 1.82 | 8500 | 0.1208 | |
|
| 0.1105 | 1.93 | 9000 | 0.1182 | |
|
| 0.0938 | 2.03 | 9500 | 0.1212 | |
|
| 0.0995 | 2.14 | 10000 | 0.1215 | |
|
| 0.075 | 2.25 | 10500 | 0.1223 | |
|
| 0.0746 | 2.35 | 11000 | 0.1201 | |
|
| 0.0816 | 2.46 | 11500 | 0.1187 | |
|
| 0.0819 | 2.57 | 12000 | 0.1170 | |
|
| 0.0876 | 2.68 | 12500 | 0.1164 | |
|
| 0.0628 | 2.78 | 13000 | 0.1168 | |
|
| 0.0695 | 2.89 | 13500 | 0.1166 | |
|
| 0.0835 | 3.0 | 14000 | 0.1162 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.34.1 |
|
- Pytorch 2.1.0 |
|
- Datasets 2.14.6 |
|
- Tokenizers 0.14.1 |
|
|