mdeberta-semeval25_narratives09_maxf1_fold4
This model is a fine-tuned version of microsoft/mdeberta-v3-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 3.7723
- Precision Samples: 0.3728
- Recall Samples: 0.7825
- F1 Samples: 0.4666
- Precision Macro: 0.6810
- Recall Macro: 0.4981
- F1 Macro: 0.2753
- Precision Micro: 0.3085
- Recall Micro: 0.7647
- F1 Micro: 0.4397
- Precision Weighted: 0.4751
- Recall Weighted: 0.7647
- F1 Weighted: 0.3999
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Precision Samples | Recall Samples | F1 Samples | Precision Macro | Recall Macro | F1 Macro | Precision Micro | Recall Micro | F1 Micro | Precision Weighted | Recall Weighted | F1 Weighted |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
5.7927 | 1.0 | 19 | 4.9875 | 1.0 | 0.0 | 0.0 | 1.0 | 0.0476 | 0.0476 | 1.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 |
5.0899 | 2.0 | 38 | 4.7740 | 0.3023 | 0.3386 | 0.2905 | 0.8797 | 0.1700 | 0.1306 | 0.316 | 0.3098 | 0.3129 | 0.7069 | 0.3098 | 0.2068 |
5.1834 | 3.0 | 57 | 4.4517 | 0.3345 | 0.4776 | 0.3732 | 0.8493 | 0.2311 | 0.1457 | 0.3314 | 0.4471 | 0.3806 | 0.6524 | 0.4471 | 0.2368 |
4.8195 | 4.0 | 76 | 4.2678 | 0.3568 | 0.6033 | 0.4120 | 0.7813 | 0.3360 | 0.2022 | 0.2962 | 0.5843 | 0.3931 | 0.5651 | 0.5843 | 0.3175 |
4.6183 | 5.0 | 95 | 4.0323 | 0.3872 | 0.6493 | 0.4394 | 0.7313 | 0.3521 | 0.2083 | 0.3204 | 0.6157 | 0.4215 | 0.5136 | 0.6157 | 0.3340 |
4.4332 | 6.0 | 114 | 3.9321 | 0.3921 | 0.7197 | 0.4615 | 0.7159 | 0.4256 | 0.2492 | 0.3092 | 0.7020 | 0.4293 | 0.4982 | 0.7020 | 0.3797 |
4.0992 | 7.0 | 133 | 3.8524 | 0.3728 | 0.7641 | 0.4640 | 0.6877 | 0.4789 | 0.2773 | 0.3147 | 0.7490 | 0.4432 | 0.4802 | 0.7490 | 0.4020 |
4.1885 | 8.0 | 152 | 3.7985 | 0.3751 | 0.7932 | 0.4751 | 0.6821 | 0.4933 | 0.2773 | 0.3176 | 0.7647 | 0.4488 | 0.4788 | 0.7647 | 0.4065 |
4.3678 | 9.0 | 171 | 3.7859 | 0.3739 | 0.7825 | 0.4678 | 0.6821 | 0.4981 | 0.2766 | 0.3105 | 0.7647 | 0.4417 | 0.4760 | 0.7647 | 0.4010 |
3.9512 | 10.0 | 190 | 3.7723 | 0.3728 | 0.7825 | 0.4666 | 0.6810 | 0.4981 | 0.2753 | 0.3085 | 0.7647 | 0.4397 | 0.4751 | 0.7647 | 0.3999 |
Framework versions
- Transformers 4.46.0
- Pytorch 2.3.1
- Datasets 2.21.0
- Tokenizers 0.20.1
- Downloads last month
- 34
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for g-assismoraes/mdeberta-semeval25_narratives09_maxf1_fold4
Base model
microsoft/mdeberta-v3-base