deberta-semeval25_EN08_fold4
This model is a fine-tuned version of microsoft/deberta-v3-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 9.1897
- Precision Samples: 0.1604
- Recall Samples: 0.6146
- F1 Samples: 0.2366
- Precision Macro: 0.7633
- Recall Macro: 0.4302
- F1 Macro: 0.2957
- Precision Micro: 0.1495
- Recall Micro: 0.5306
- F1 Micro: 0.2332
- Precision Weighted: 0.4778
- Recall Weighted: 0.5306
- F1 Weighted: 0.1751
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Precision Samples | Recall Samples | F1 Samples | Precision Macro | Recall Macro | F1 Macro | Precision Micro | Recall Micro | F1 Micro | Precision Weighted | Recall Weighted | F1 Weighted |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
10.3966 | 1.0 | 19 | 10.8605 | 1.0 | 0.0 | 0.0 | 1.0 | 0.2333 | 0.2333 | 1.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 |
10.1016 | 2.0 | 38 | 10.4044 | 0.1770 | 0.2926 | 0.1885 | 0.9724 | 0.2657 | 0.2430 | 0.1751 | 0.1722 | 0.1737 | 0.8561 | 0.1722 | 0.0525 |
9.6871 | 3.0 | 57 | 10.1400 | 0.1579 | 0.3440 | 0.1920 | 0.9413 | 0.2860 | 0.2471 | 0.1484 | 0.2333 | 0.1814 | 0.7657 | 0.2333 | 0.0649 |
9.4348 | 4.0 | 76 | 9.8391 | 0.1748 | 0.4387 | 0.2291 | 0.8867 | 0.3321 | 0.2655 | 0.1568 | 0.3472 | 0.2161 | 0.6401 | 0.3472 | 0.1111 |
9.2239 | 5.0 | 95 | 9.6192 | 0.1712 | 0.4963 | 0.2351 | 0.8277 | 0.3609 | 0.2784 | 0.1598 | 0.4111 | 0.2302 | 0.5594 | 0.4111 | 0.1433 |
8.756 | 6.0 | 114 | 9.5185 | 0.1683 | 0.5525 | 0.2394 | 0.8002 | 0.3972 | 0.2954 | 0.1569 | 0.4694 | 0.2352 | 0.5206 | 0.4694 | 0.1611 |
8.4617 | 7.0 | 133 | 9.3178 | 0.1606 | 0.5826 | 0.2330 | 0.7875 | 0.4124 | 0.2897 | 0.1483 | 0.5056 | 0.2294 | 0.5074 | 0.5056 | 0.1567 |
7.9981 | 8.0 | 152 | 9.3682 | 0.1586 | 0.5750 | 0.2311 | 0.7686 | 0.4101 | 0.2891 | 0.1470 | 0.4889 | 0.2261 | 0.4698 | 0.4889 | 0.1577 |
8.4678 | 9.0 | 171 | 9.2193 | 0.1617 | 0.5937 | 0.2359 | 0.7633 | 0.4199 | 0.2951 | 0.1513 | 0.5111 | 0.2335 | 0.4750 | 0.5111 | 0.1703 |
8.2932 | 10.0 | 190 | 9.1897 | 0.1604 | 0.6146 | 0.2366 | 0.7633 | 0.4302 | 0.2957 | 0.1495 | 0.5306 | 0.2332 | 0.4778 | 0.5306 | 0.1751 |
Framework versions
- Transformers 4.46.0
- Pytorch 2.3.1
- Datasets 2.21.0
- Tokenizers 0.20.1
- Downloads last month
- 41
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for g-assismoraes/deberta-semeval25_EN08_fold4
Base model
microsoft/deberta-v3-base