deberta-semeval25_EN08_fold1
This model is a fine-tuned version of microsoft/deberta-v3-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 8.2509
- Precision Samples: 0.1249
- Recall Samples: 0.6497
- F1 Samples: 0.1949
- Precision Macro: 0.7291
- Recall Macro: 0.4651
- F1 Macro: 0.2720
- Precision Micro: 0.1058
- Recall Micro: 0.5833
- F1 Micro: 0.1791
- Precision Weighted: 0.4269
- Recall Weighted: 0.5833
- F1 Weighted: 0.1477
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Precision Samples | Recall Samples | F1 Samples | Precision Macro | Recall Macro | F1 Macro | Precision Micro | Recall Micro | F1 Micro | Precision Weighted | Recall Weighted | F1 Weighted |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
10.742 | 1.0 | 19 | 9.6524 | 0.9589 | 0.0205 | 0.0205 | 0.9926 | 0.2234 | 0.2240 | 0.3333 | 0.0093 | 0.0180 | 0.9403 | 0.0093 | 0.0141 |
10.3264 | 2.0 | 38 | 9.2947 | 0.1229 | 0.2857 | 0.1608 | 0.9497 | 0.2667 | 0.2315 | 0.1199 | 0.1975 | 0.1492 | 0.8249 | 0.1975 | 0.0493 |
9.6673 | 3.0 | 57 | 9.0965 | 0.1046 | 0.3364 | 0.1497 | 0.8967 | 0.2889 | 0.2395 | 0.1043 | 0.2562 | 0.1482 | 0.7240 | 0.2562 | 0.0668 |
9.8896 | 4.0 | 76 | 8.8422 | 0.1293 | 0.4635 | 0.1839 | 0.8434 | 0.3589 | 0.2560 | 0.1089 | 0.3951 | 0.1708 | 0.6154 | 0.3951 | 0.1115 |
9.3618 | 5.0 | 95 | 8.6755 | 0.1328 | 0.5445 | 0.1914 | 0.8002 | 0.4059 | 0.2609 | 0.1064 | 0.5 | 0.1754 | 0.5064 | 0.5 | 0.1267 |
9.3241 | 6.0 | 114 | 8.5167 | 0.1332 | 0.6158 | 0.2021 | 0.8049 | 0.4417 | 0.2741 | 0.1122 | 0.5525 | 0.1865 | 0.5153 | 0.5525 | 0.1459 |
8.8868 | 7.0 | 133 | 8.3815 | 0.1264 | 0.6295 | 0.1955 | 0.7506 | 0.4425 | 0.2703 | 0.1084 | 0.5556 | 0.1815 | 0.4567 | 0.5556 | 0.1413 |
8.9554 | 8.0 | 152 | 8.3410 | 0.1273 | 0.6363 | 0.1981 | 0.7317 | 0.4531 | 0.2747 | 0.1104 | 0.5648 | 0.1848 | 0.4291 | 0.5648 | 0.1491 |
8.8845 | 9.0 | 171 | 8.2870 | 0.1274 | 0.6487 | 0.1990 | 0.7306 | 0.4630 | 0.2744 | 0.1104 | 0.5833 | 0.1857 | 0.4288 | 0.5833 | 0.1511 |
8.5189 | 10.0 | 190 | 8.2509 | 0.1249 | 0.6497 | 0.1949 | 0.7291 | 0.4651 | 0.2720 | 0.1058 | 0.5833 | 0.1791 | 0.4269 | 0.5833 | 0.1477 |
Framework versions
- Transformers 4.46.0
- Pytorch 2.3.1
- Datasets 2.21.0
- Tokenizers 0.20.1
- Downloads last month
- 16
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for g-assismoraes/deberta-semeval25_EN08_fold1
Base model
microsoft/deberta-v3-base