deberta-large-semeval25_EN08_fold4
This model is a fine-tuned version of microsoft/deberta-v3-large on the None dataset. It achieves the following results on the evaluation set:
- Loss: 8.0968
- Precision Samples: 0.1277
- Recall Samples: 0.8179
- F1 Samples: 0.2131
- Precision Macro: 0.3800
- Recall Macro: 0.7101
- F1 Macro: 0.2707
- Precision Micro: 0.1256
- Recall Micro: 0.7889
- F1 Micro: 0.2167
- Precision Weighted: 0.2111
- Recall Weighted: 0.7889
- F1 Weighted: 0.2494
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Precision Samples | Recall Samples | F1 Samples | Precision Macro | Recall Macro | F1 Macro | Precision Micro | Recall Micro | F1 Micro | Precision Weighted | Recall Weighted | F1 Weighted |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
10.3595 | 1.0 | 73 | 10.0150 | 0.1187 | 0.4154 | 0.1640 | 0.9017 | 0.3154 | 0.2532 | 0.1115 | 0.3167 | 0.1650 | 0.6711 | 0.3167 | 0.0826 |
9.1971 | 2.0 | 146 | 9.4160 | 0.1191 | 0.6148 | 0.1778 | 0.7693 | 0.4444 | 0.2773 | 0.1049 | 0.5417 | 0.1758 | 0.4587 | 0.5417 | 0.1310 |
7.9996 | 3.0 | 219 | 8.8114 | 0.1176 | 0.7117 | 0.1924 | 0.5851 | 0.5468 | 0.2806 | 0.1088 | 0.6667 | 0.1871 | 0.3031 | 0.6667 | 0.1706 |
7.463 | 4.0 | 292 | 8.5503 | 0.1224 | 0.7819 | 0.1931 | 0.5197 | 0.6480 | 0.2805 | 0.1125 | 0.7472 | 0.1955 | 0.2758 | 0.7472 | 0.1944 |
8.4991 | 5.0 | 365 | 8.3932 | 0.1203 | 0.7938 | 0.2006 | 0.4699 | 0.6469 | 0.2725 | 0.1138 | 0.7472 | 0.1976 | 0.2545 | 0.7472 | 0.2056 |
5.8266 | 6.0 | 438 | 8.2974 | 0.1222 | 0.8157 | 0.2042 | 0.4218 | 0.6797 | 0.2494 | 0.1148 | 0.7778 | 0.2001 | 0.2412 | 0.7778 | 0.2214 |
6.4555 | 7.0 | 511 | 8.2044 | 0.1241 | 0.7945 | 0.2076 | 0.3889 | 0.6770 | 0.2569 | 0.1224 | 0.7667 | 0.2111 | 0.2286 | 0.7667 | 0.2450 |
6.1701 | 8.0 | 584 | 8.2297 | 0.1285 | 0.8057 | 0.2131 | 0.3902 | 0.7018 | 0.2765 | 0.1267 | 0.7722 | 0.2176 | 0.2159 | 0.7722 | 0.2478 |
6.2618 | 9.0 | 657 | 8.1061 | 0.1281 | 0.8229 | 0.2137 | 0.3794 | 0.7040 | 0.2694 | 0.1243 | 0.7833 | 0.2145 | 0.2090 | 0.7833 | 0.2462 |
6.6155 | 10.0 | 730 | 8.0968 | 0.1277 | 0.8179 | 0.2131 | 0.3800 | 0.7101 | 0.2707 | 0.1256 | 0.7889 | 0.2167 | 0.2111 | 0.7889 | 0.2494 |
Framework versions
- Transformers 4.46.0
- Pytorch 2.3.1
- Datasets 2.21.0
- Tokenizers 0.20.1
- Downloads last month
- 2
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for g-assismoraes/deberta-large-semeval25_EN08_fold4
Base model
microsoft/deberta-v3-large