deberta-large-semeval25_EN08_fold1
This model is a fine-tuned version of microsoft/deberta-v3-large on the None dataset. It achieves the following results on the evaluation set:
- Loss: 7.2150
- Precision Samples: 0.1016
- Recall Samples: 0.8120
- F1 Samples: 0.1744
- Precision Macro: 0.4040
- Recall Macro: 0.6916
- F1 Macro: 0.2551
- Precision Micro: 0.0950
- Recall Micro: 0.7870
- F1 Micro: 0.1695
- Precision Weighted: 0.2008
- Recall Weighted: 0.7870
- F1 Weighted: 0.2171
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Precision Samples | Recall Samples | F1 Samples | Precision Macro | Recall Macro | F1 Macro | Precision Micro | Recall Micro | F1 Micro | Precision Weighted | Recall Weighted | F1 Weighted |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
9.8711 | 1.0 | 73 | 8.8570 | 0.0978 | 0.4834 | 0.1557 | 0.8682 | 0.3461 | 0.2448 | 0.0975 | 0.4043 | 0.1571 | 0.5919 | 0.4043 | 0.0854 |
8.2971 | 2.0 | 146 | 8.2276 | 0.1082 | 0.6729 | 0.1741 | 0.7046 | 0.4763 | 0.2696 | 0.0946 | 0.6173 | 0.1641 | 0.3929 | 0.6173 | 0.1405 |
7.5948 | 3.0 | 219 | 7.9992 | 0.0990 | 0.6954 | 0.1650 | 0.6089 | 0.5297 | 0.2772 | 0.0914 | 0.6512 | 0.1603 | 0.2959 | 0.6512 | 0.1492 |
7.0815 | 4.0 | 292 | 7.8758 | 0.0929 | 0.7629 | 0.1597 | 0.5483 | 0.6015 | 0.2645 | 0.0883 | 0.7191 | 0.1573 | 0.2531 | 0.7191 | 0.1680 |
8.4958 | 5.0 | 365 | 7.5246 | 0.0945 | 0.7963 | 0.1625 | 0.5313 | 0.6367 | 0.2740 | 0.0859 | 0.7469 | 0.1541 | 0.2431 | 0.7469 | 0.1821 |
6.9189 | 6.0 | 438 | 7.5150 | 0.1045 | 0.8052 | 0.1680 | 0.5023 | 0.6561 | 0.2707 | 0.0906 | 0.7654 | 0.1621 | 0.2333 | 0.7654 | 0.1919 |
6.9602 | 7.0 | 511 | 7.4003 | 0.0983 | 0.8095 | 0.1691 | 0.4487 | 0.6672 | 0.2613 | 0.0903 | 0.7778 | 0.1618 | 0.2010 | 0.7778 | 0.2003 |
6.313 | 8.0 | 584 | 7.2823 | 0.1004 | 0.8072 | 0.1719 | 0.4318 | 0.6775 | 0.2579 | 0.0930 | 0.7840 | 0.1663 | 0.1996 | 0.7840 | 0.2071 |
6.7969 | 9.0 | 657 | 7.3025 | 0.1037 | 0.8251 | 0.1775 | 0.4212 | 0.6896 | 0.2595 | 0.0965 | 0.7901 | 0.1720 | 0.2114 | 0.7901 | 0.2231 |
6.5913 | 10.0 | 730 | 7.2150 | 0.1016 | 0.8120 | 0.1744 | 0.4040 | 0.6916 | 0.2551 | 0.0950 | 0.7870 | 0.1695 | 0.2008 | 0.7870 | 0.2171 |
Framework versions
- Transformers 4.46.0
- Pytorch 2.3.1
- Datasets 2.21.0
- Tokenizers 0.20.1
- Downloads last month
- 2
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for g-assismoraes/deberta-large-semeval25_EN08_fold1
Base model
microsoft/deberta-v3-large