fsicoli's picture
End of training
542335a verified
metadata
library_name: transformers
license: apache-2.0
base_model: openai/whisper-large-v3
tags:
  - generated_from_trainer
datasets:
  - fsicoli/common_voice_18_0
metrics:
  - wer
model-index:
  - name: whisper-large-v3-pt-3000h-4
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: fsicoli/common_voice_18_0 pt
          type: fsicoli/common_voice_18_0
          config: pt
          split: None
          args: pt
        metrics:
          - name: Wer
            type: wer
            value: 0.10807174887892376

whisper-large-v3-pt-3000h-4

This model is a fine-tuned version of openai/whisper-large-v3 on the fsicoli/common_voice_18_0 pt dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1938
  • Wer: 0.1081

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-06
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 10.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0849 1.0 5529 0.1938 0.1081
0.0788 2.0 11058 0.2289 0.1061
0.0183 3.0 16587 0.2809 0.1079
0.0322 4.0 22116 0.3088 0.1058
0.0273 5.0 27645 0.3222 0.1038
0.0204 6.0 33174 0.3532 0.1066
0.0605 7.0 38703 0.3542 0.1053
0.043 8.0 44232 0.3669 0.1049
0.0204 9.0 49761 0.3707 0.1036
0.0159 10.0 55290 0.3697 0.1031

Framework versions

  • Transformers 4.45.0.dev0
  • Pytorch 2.4.0+cu124
  • Datasets 2.18.1.dev0
  • Tokenizers 0.19.1