metadata
library_name: transformers
base_model: meta-llama/Meta-Llama-3.1-8B-Instruct
license: llama3.1
model-index:
- name: Meta-Llama-3.1-8B-Instruct-INT4
results: []
language:
- en
- de
- fr
- it
- pt
- hi
- es
- th
tags:
- facebook
- meta
- pytorch
- llama
- llama-3
Model Card for Model ID
This is a quantized version of Llama 3.1 70B Instruct
. Quantization to 4-bit using bistandbytes
and accelerate
.
- Developed by: [More Information Needed]
- License: llama3.1
- Base Model [optional]: meta-llama/Meta-Llama-3.1-8B-Instruct
# Use a pipeline as a high-level helper
from transformers import pipeline
messages = [
{"role": "user", "content": "Who are you?"},
]
pipe = pipeline("text-generation", model="meta-llama/Meta-Llama-3.1-8B-Instruct")
pipe(messages) Copy # Load model directly
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Meta-Llama-3.1-8B-Instruct")
model = AutoModelForCausalLM.from_pretrained("meta-llama/Meta-Llama-3.1-8B-Instruct")
The model information can be found in the original meta-llama/Meta-Llama-3.1-8B-Instruct