Edit model card

Usage:

  1. For mask prediction
tokenizer = AutoTokenizer.from_pretrained("francois-meyer/nguni-xlmr-large")
model = XLMRobertaForMaskedLM.from_pretrained("francois-meyer/nguni-xlmr-large")
text = "A test <mask> for the nguni model." ## Replace with any sentence from the Nguni Languages with mask tokens.
inputs = tokenizer(text, return_tensors="pt")
with torch.no_grad():
  logits = model(**inputs).logits
mask_token_index = (inputs.input_ids == tokenizer.mask_token_id)[0].nonzero(as_tuple=True)[0]
predicted_token_id = logits[0, mask_token_index].argmax(axis=-1)
print(tokenizer.decode(predicted_token_id))
  1. For any other task, you might want to fine-tune the model in the same way you fine-tune a BERT/XLMR model.
Downloads last month
374
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.