🩺 MedFusion-AI (Unified Radiology Pipeline)

Pro + Lite unified radiology model β€” powered by MedSigLIP & MedGemma

Use this model Deploy Train License: MIT


🧠 About the Model

MedFusion-AI is a unified multimodal medical-AI pipeline integrating vision encoders and text decoders to produce full radiology reports from X-ray or DICOM inputs.

Mode Encoder Decoder Precision
Pro fokan/medsiglip-448-fp16-pruned20 fokan/medgemma-4b-it-fp16-pruned20 FP16 + Pruned (High accuracy)
Lite fokan/medsiglip-448-int8 fokan/medgemma-4b-it-int8 INT8 (Compact & fast)

🩻 Usage (Python)

from medfusion_pipeline import MedFusionPipeline

pipe = MedFusionPipeline.from_pretrained(".", mode="pro")  # or 'lite'
report = pipe.analyze("sample_xray.jpg")
print(report)

βš™οΈ Modes

  • pro β†’ FP16 + Pruned (High accuracy)
  • lite β†’ INT8 (Compact speed-optimized)

πŸ’‘ Features

  • Handles X-ray / DICOM inputs automatically
  • Generates structured radiology reports
  • Plug-and-play dual pipeline (Pro & Lite)
  • Optimized for medical education + research

🧩 Deployment Options

Platform Description
πŸ€— Hugging Face Spaces One-click Gradio demo or inference API
πŸš€ HF Inference Endpoint GPU-backed endpoint for production
πŸ’» Local Deployment Python + Torch runtime (CPU/GPU friendly)

πŸ“Š Model Specs

  • Architecture: MedSigLIP encoder + MedGemma decoder
  • Params: ~4 B (Teacher) β†’ ~0.4 B (Student Distilled)
  • Input Resolution: 224 / 448 px
  • Optimized for: Chest X-rays & general radiographs

πŸ“œ Citation

If you use MedFusion-AI in research, please cite:

@software{fokan_medfusion_ai_2025,
  title={MedFusion-AI: Unified Radiology Encoder-Decoder Pipeline},
  author={Karrar Alhdrawi},
  year={2025},
  url={https://huggingface.co/fokan/MedFusion-AI}
}

Built with ❀️ by fokan
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. πŸ™‹ 1 Ask for provider support