factory_qwen_results

This model is a fine-tuned version of Qwen/Qwen3-8B on the train dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2496
  • Accuracy: 0.9448

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 3
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 24
  • total_eval_batch_size: 6
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.03
  • num_epochs: 9.0

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.3591 1.0 42 0.3988 0.9035
0.2673 2.0 84 0.3260 0.9197
0.2425 3.0 126 0.2898 0.9289
0.2069 4.0 168 0.2659 0.9346
0.138 5.0 210 0.2525 0.9391
0.1251 6.0 252 0.2497 0.9431
0.1072 7.0 294 0.2475 0.9439
0.1059 8.0 336 0.2483 0.9446
0.1073 8.7904 369 0.2496 0.9448

Framework versions

  • PEFT 0.15.2
  • Transformers 4.51.3
  • Pytorch 2.7.1+cu126
  • Datasets 3.6.0
  • Tokenizers 0.21.1
Downloads last month
21
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for finalform/foamQwen3-8B

Base model

Qwen/Qwen3-8B-Base
Finetuned
Qwen/Qwen3-8B
Adapter
(194)
this model

Collection including finalform/foamQwen3-8B