finalform's picture
Upload folder using huggingface_hub
d07fa30 verified
metadata
library_name: peft
license: other
base_model: meta-llama/Llama-3.1-8B-Instruct
tags:
  - llama-factory
  - lora
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: factory_llama_results
    results: []

factory_llama_results

This model is a fine-tuned version of meta-llama/Llama-3.1-8B-Instruct on the train dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2624
  • Accuracy: 0.9526

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 3
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 24
  • total_eval_batch_size: 6
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.03
  • num_epochs: 9.0

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.3833 1.0 42 0.3712 0.9116
0.298 2.0 84 0.2805 0.9280
0.2038 3.0 126 0.2475 0.9400
0.1427 4.0 168 0.2243 0.9458
0.1081 5.0 210 0.2245 0.9490
0.066 6.0 252 0.2289 0.9516
0.0503 7.0 294 0.2457 0.9523
0.0401 8.0 336 0.2616 0.9527
0.0338 8.7904 369 0.2624 0.9526

Framework versions

  • PEFT 0.15.2
  • Transformers 4.51.3
  • Pytorch 2.7.1+cu126
  • Datasets 3.6.0
  • Tokenizers 0.21.1