distilbert-base-uncased-finetuned-text_classification
This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.8070
- Accuracy: 0.8804
- Recall: 0.9572
- Precision: 0.8557
- F1: 0.9036
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Recall | Precision | F1 |
---|---|---|---|---|---|---|---|
No log | 1.0 | 231 | 0.3988 | 0.8460 | 0.9462 | 0.8190 | 0.8780 |
No log | 2.0 | 462 | 0.3742 | 0.8757 | 0.9432 | 0.8586 | 0.8989 |
0.148 | 3.0 | 693 | 0.5030 | 0.8670 | 0.9323 | 0.8540 | 0.8914 |
0.148 | 4.0 | 924 | 0.6576 | 0.8699 | 0.9592 | 0.8410 | 0.8962 |
0.0525 | 5.0 | 1155 | 0.7022 | 0.8641 | 0.9552 | 0.8361 | 0.8917 |
0.0525 | 6.0 | 1386 | 0.8569 | 0.8617 | 0.9671 | 0.8264 | 0.8912 |
0.0148 | 7.0 | 1617 | 0.7352 | 0.8769 | 0.9542 | 0.8531 | 0.9008 |
0.0148 | 8.0 | 1848 | 0.8513 | 0.8705 | 0.9612 | 0.8406 | 0.8968 |
0.0075 | 9.0 | 2079 | 0.7685 | 0.8781 | 0.9482 | 0.8584 | 0.9011 |
0.0075 | 10.0 | 2310 | 0.8070 | 0.8804 | 0.9572 | 0.8557 | 0.9036 |
Framework versions
- Transformers 4.51.1
- Pytorch 2.6.0+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1
- Downloads last month
- 31
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for fedeortegariba/distilbert-base-uncased-finetuned-text_classification
Base model
distilbert/distilbert-base-uncased