distilbert-base-uncased-finetuned-text_classification

This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8070
  • Accuracy: 0.8804
  • Recall: 0.9572
  • Precision: 0.8557
  • F1: 0.9036

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy Recall Precision F1
No log 1.0 231 0.3988 0.8460 0.9462 0.8190 0.8780
No log 2.0 462 0.3742 0.8757 0.9432 0.8586 0.8989
0.148 3.0 693 0.5030 0.8670 0.9323 0.8540 0.8914
0.148 4.0 924 0.6576 0.8699 0.9592 0.8410 0.8962
0.0525 5.0 1155 0.7022 0.8641 0.9552 0.8361 0.8917
0.0525 6.0 1386 0.8569 0.8617 0.9671 0.8264 0.8912
0.0148 7.0 1617 0.7352 0.8769 0.9542 0.8531 0.9008
0.0148 8.0 1848 0.8513 0.8705 0.9612 0.8406 0.8968
0.0075 9.0 2079 0.7685 0.8781 0.9482 0.8584 0.9011
0.0075 10.0 2310 0.8070 0.8804 0.9572 0.8557 0.9036

Framework versions

  • Transformers 4.51.1
  • Pytorch 2.6.0+cu124
  • Datasets 3.5.0
  • Tokenizers 0.21.1
Downloads last month
31
Safetensors
Model size
67M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for fedeortegariba/distilbert-base-uncased-finetuned-text_classification

Finetuned
(8452)
this model