fbaldassarri's picture
Initial Upload
ed0e87c verified
metadata
language:
  - en
  - es
  - fr
  - de
  - pt
  - ja
  - it
  - zh
  - ko
  - ar
  - cs
  - nl
pipeline_tag: text-generation
license: apache-2.0
library_name: transformers
tags:
  - granite-3.2
  - autoround
  - auto-round
  - intel-autoround
  - intel
  - awq
  - auto-awq
  - autoawq
  - woq
  - pytorch
  - ibm
  - granite
  - granite-3
model_name: Granite 3.2 2b instruct
base_model:
  - ibm-granite/granite-3.2-2b-instruct
inference: false
model_creator: ibm-granite
prompt_template: '{prompt}'
quantized_by: fbaldassarri

Model Information

Quantized version of ibm-granite/granite-3.2-2b-instruct using torch.float32 for quantization tuning.

  • 4 bits (INT4)
  • group size = 128
  • Asymmetrical Quantization
  • Method AutoAWQ format

Quantization framework: Intel AutoRound v0.4.7

Note: this INT4 version of granite-3.2-2b-instruct has been quantized to run inference through CPU.

Replication Recipe

Step 1 Install Requirements

I suggest to install requirements into a dedicated python-virtualenv or a conda enviroment.

wget https://github.com/intel/auto-round/archive/refs/tags/v0.4.7.tar.gz
tar -xvzf v0.4.7.tar.gz
cd auto-round-0.4.7
pip install -r requirements-cpu.txt --upgrade

Step 2 Build Intel AutoRound wheel from sources

pip install -vvv --no-build-isolation -e .[cpu]

Step 3 Script for Quantization

  from transformers import AutoModelForCausalLM, AutoTokenizer
  model_name = "ibm-granite/granite-3.2-2b-instruct"
  model = AutoModelForCausalLM.from_pretrained(model_name)
  tokenizer = AutoTokenizer.from_pretrained(model_name)
  from auto_round import AutoRound
  bits, group_size, sym, device = 4, 128, False, 'cpu'
  autoround = AutoRound(model, tokenizer, nsamples=128, iters=200, seqlen=512, batch_size=4, bits=bits, group_size=group_size, sym=sym, device=device)
  autoround.quantize()
  output_dir = "./AutoRound/ibm-granite_granite-3.2-2b-instruct-autoawq-int4-gs128-asym"
  autoround.save_quantized(output_dir, format='auto_awq', inplace=True)

License

Apache 2.0 License

Disclaimer

This quantized model comes with no warrenty. It has been developed only for research purposes.