AutoAWQ-INT4-gs64
Collection
A collection of models quantized in AutoAWQ format using Intel AutoRound, INT4, groupsize 64
•
30 items
•
Updated
Quantized version of EleutherAI/pythia-14m using torch.float32 for quantization tuning.
Quantization framework: Intel AutoRound v0.4.7
Note: this INT4 version of pythia-14m has been quantized to run inference through CPU.
I suggest to install requirements into a dedicated python-virtualenv or a conda enviroment.
wget https://github.com/intel/auto-round/archive/refs/tags/v0.4.7.tar.gz
tar -xvzf v0.4.7.tar.gz
cd auto-round-0.4.7
pip install -r requirements-cpu.txt --upgrade
pip install -vvv --no-build-isolation -e .[cpu]
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "EleutherAI/pythia-14m"
model = AutoModelForCausalLM.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
from auto_round import AutoRound
bits, group_size, sym, device = 4, 64, False, 'cpu'
autoround = AutoRound(model, tokenizer, nsamples=128, iters=200, seqlen=512, batch_size=4, bits=bits, group_size=group_size, sym=sym, device=device)
autoround.quantize()
output_dir = "./AutoRound/EleutherAI_pythia-14m-autoawq-int4-gs64-asym"
auto
## License
[Apache 2.0 License](https://choosealicense.com/licenses/apache-2.0/)
## Disclaimer
This quantized model comes with no warrenty. It has been developed only for research purposes.
Base model
EleutherAI/pythia-14m