Model Information

Quantized version of EleutherAI/pythia-14m using torch.float32 for quantization tuning.

  • 4 bits (INT4)
  • group size = 64
  • Asymmetrical Quantization
  • Method AutoAWQ format

Quantization framework: Intel AutoRound v0.4.7

Note: this INT4 version of pythia-14m has been quantized to run inference through CPU.

Replication Recipe

Step 1 Install Requirements

I suggest to install requirements into a dedicated python-virtualenv or a conda enviroment.

wget https://github.com/intel/auto-round/archive/refs/tags/v0.4.7.tar.gz
tar -xvzf v0.4.7.tar.gz
cd auto-round-0.4.7
pip install -r requirements-cpu.txt --upgrade

Step 2 Build Intel AutoRound wheel from sources

pip install -vvv --no-build-isolation -e .[cpu]

Step 3 Script for Quantization

  from transformers import AutoModelForCausalLM, AutoTokenizer
  model_name = "EleutherAI/pythia-14m"
  model = AutoModelForCausalLM.from_pretrained(model_name)
  tokenizer = AutoTokenizer.from_pretrained(model_name)
  from auto_round import AutoRound
  bits, group_size, sym, device = 4, 64, False, 'cpu'
  autoround = AutoRound(model, tokenizer, nsamples=128, iters=200, seqlen=512, batch_size=4, bits=bits, group_size=group_size, sym=sym, device=device)
  autoround.quantize()
  output_dir = "./AutoRound/EleutherAI_pythia-14m-autoawq-int4-gs64-asym"
  auto

## License

[Apache 2.0 License](https://choosealicense.com/licenses/apache-2.0/)

## Disclaimer

This quantized model comes with no warrenty. It has been developed only for research purposes. 
Downloads last month
0
Safetensors
Model size
13.1M params
Tensor type
F32
·
I32
·
FP16
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for fbaldassarri/EleutherAI_pythia-14m-autoawq-int4-gs64-asym

Quantized
(23)
this model

Dataset used to train fbaldassarri/EleutherAI_pythia-14m-autoawq-int4-gs64-asym

Collection including fbaldassarri/EleutherAI_pythia-14m-autoawq-int4-gs64-asym