YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

Food Caption BLIP2

This is a fine-tuned version of the BLIP2 model for food image captioning.

Model Details

  • Base model: BLIP2-OPT-2.7B
  • Fine-tuned on food images
  • Dataset size: 60 images
  • Training epochs: 15
  • Hardware used: CPU
  • Final loss: 0.0001
  • Training date: 2024-03-15

Usage

from transformers import Blip2Processor, Blip2ForConditionalGeneration
from PIL import Image

processor = Blip2Processor.from_pretrained("fathindifa/food-caption-blip2")
model = Blip2ForConditionalGeneration.from_pretrained("fathindifa/food-caption-blip2")

# Load and preprocess image
image = Image.open("food_image.jpg").convert('RGB')
inputs = processor(images=image, return_tensors="pt")

# Generate caption
outputs = model.generate(**inputs, max_new_tokens=32)
caption = processor.batch_decode(outputs, skip_special_tokens=True)[0]
print(caption)
Downloads last month
14
Safetensors
Model size
3.74B params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Space using fathindifa/food-caption-blip2 1