SetFit with sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
Model Sources
Model Labels
Label |
Examples |
matches-match_time |
- 'Norwich City vs Newcastle United'
- 'will Manchester United play with chelsea'
- 'est-ce que Manchester United jouera avec chelsea'
|
matches-match_result |
- 'Liverpool and West Ham result'
- 'what is the score of Wolverhampton match'
- 'who won in Liverpool vs Newcastle United match'
|
greet-who_are_you |
- 'how can you help me'
- "pourquoi j'ai besoin de toi"
- 'je ne te comprends pas'
|
matches-team_next_match |
- 'Real Madrid fixtures'
- 'quels sont les prochains matchs de Borussia Dortmund'
- 'próximos partidos de Atletico Madrid'
|
greet-good_bye |
- 'See you later'
- 'A plus tard'
- 'stop'
|
greet-hi |
- 'Hello buddy'
- 'Salut'
- 'Hey'
|
Evaluation
Metrics
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
model = SetFitModel.from_pretrained("fadyabdo/botpress_football_sft_model")
preds = model("au revoir")
Training Details
Training Set Metrics
Training set |
Min |
Median |
Max |
Word count |
1 |
5.2 |
10 |
Label |
Training Sample Count |
greet-hi |
5 |
greet-who_are_you |
7 |
greet-good_bye |
5 |
matches-team_next_match |
21 |
matches-match_time |
12 |
matches-match_result |
15 |
Training Hyperparameters
- batch_size: (4, 4)
- num_epochs: (4, 4)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: True
Training Results
Epoch |
Step |
Training Loss |
Validation Loss |
0.0012 |
1 |
0.1544 |
- |
0.0121 |
10 |
0.0658 |
- |
0.0241 |
20 |
0.1235 |
- |
0.0362 |
30 |
0.2422 |
- |
0.0483 |
40 |
0.2876 |
- |
0.0603 |
50 |
0.1208 |
- |
0.0724 |
60 |
0.1358 |
- |
0.0844 |
70 |
0.1494 |
- |
0.0965 |
80 |
0.1284 |
- |
0.1086 |
90 |
0.1107 |
- |
0.1206 |
100 |
0.2395 |
- |
0.1327 |
110 |
0.0661 |
- |
0.1448 |
120 |
0.1554 |
- |
0.1568 |
130 |
0.0258 |
- |
0.1689 |
140 |
0.0279 |
- |
0.1809 |
150 |
0.1162 |
- |
0.1930 |
160 |
0.0244 |
- |
0.2051 |
170 |
0.0221 |
- |
0.2171 |
180 |
0.0813 |
- |
0.2292 |
190 |
0.0188 |
- |
0.2413 |
200 |
0.03 |
- |
0.2533 |
210 |
0.0019 |
- |
0.2654 |
220 |
0.0076 |
- |
0.2774 |
230 |
0.01 |
- |
0.2895 |
240 |
0.0025 |
- |
0.3016 |
250 |
0.0705 |
- |
0.3136 |
260 |
0.0044 |
- |
0.3257 |
270 |
0.0038 |
- |
0.3378 |
280 |
0.006 |
- |
0.3498 |
290 |
0.0018 |
- |
0.3619 |
300 |
0.0003 |
- |
0.3739 |
310 |
0.0007 |
- |
0.3860 |
320 |
0.0128 |
- |
0.3981 |
330 |
0.0022 |
- |
0.4101 |
340 |
0.0008 |
- |
0.4222 |
350 |
0.004 |
- |
0.4343 |
360 |
0.0006 |
- |
0.4463 |
370 |
0.0007 |
- |
0.4584 |
380 |
0.0005 |
- |
0.4704 |
390 |
0.0057 |
- |
0.4825 |
400 |
0.0007 |
- |
0.4946 |
410 |
0.0022 |
- |
0.5066 |
420 |
0.0012 |
- |
0.5187 |
430 |
0.0009 |
- |
0.5308 |
440 |
0.0004 |
- |
0.5428 |
450 |
0.0032 |
- |
0.5549 |
460 |
0.0007 |
- |
0.5669 |
470 |
0.0008 |
- |
0.5790 |
480 |
0.0005 |
- |
0.5911 |
490 |
0.0005 |
- |
0.6031 |
500 |
0.0008 |
- |
0.6152 |
510 |
0.0008 |
- |
0.6273 |
520 |
0.0004 |
- |
0.6393 |
530 |
0.0015 |
- |
0.6514 |
540 |
0.0002 |
- |
0.6634 |
550 |
0.0006 |
- |
0.6755 |
560 |
0.0015 |
- |
0.6876 |
570 |
0.0024 |
- |
0.6996 |
580 |
0.0004 |
- |
0.7117 |
590 |
0.0005 |
- |
0.7238 |
600 |
0.0011 |
- |
0.7358 |
610 |
0.0008 |
- |
0.7479 |
620 |
0.0002 |
- |
0.7600 |
630 |
0.0006 |
- |
0.7720 |
640 |
0.0003 |
- |
0.7841 |
650 |
0.0002 |
- |
0.7961 |
660 |
0.0007 |
- |
0.8082 |
670 |
0.0009 |
- |
0.8203 |
680 |
0.0002 |
- |
0.8323 |
690 |
0.0006 |
- |
0.8444 |
700 |
0.0015 |
- |
0.8565 |
710 |
0.0003 |
- |
0.8685 |
720 |
0.0003 |
- |
0.8806 |
730 |
0.0003 |
- |
0.8926 |
740 |
0.0015 |
- |
0.9047 |
750 |
0.0003 |
- |
0.9168 |
760 |
0.0005 |
- |
0.9288 |
770 |
0.0002 |
- |
0.9409 |
780 |
0.0003 |
- |
0.9530 |
790 |
0.0002 |
- |
0.9650 |
800 |
0.0004 |
- |
0.9771 |
810 |
0.0003 |
- |
0.9891 |
820 |
0.001 |
- |
1.0 |
829 |
- |
0.0216 |
1.0012 |
830 |
0.0003 |
- |
1.0133 |
840 |
0.0007 |
- |
1.0253 |
850 |
0.0004 |
- |
1.0374 |
860 |
0.0001 |
- |
1.0495 |
870 |
0.0008 |
- |
1.0615 |
880 |
0.0003 |
- |
1.0736 |
890 |
0.0006 |
- |
1.0856 |
900 |
0.0001 |
- |
1.0977 |
910 |
0.0018 |
- |
1.1098 |
920 |
0.0 |
- |
1.1218 |
930 |
0.0001 |
- |
1.1339 |
940 |
0.0007 |
- |
1.1460 |
950 |
0.0009 |
- |
1.1580 |
960 |
0.0004 |
- |
1.1701 |
970 |
0.0003 |
- |
1.1821 |
980 |
0.0015 |
- |
1.1942 |
990 |
0.0002 |
- |
1.2063 |
1000 |
0.0005 |
- |
1.2183 |
1010 |
0.0002 |
- |
1.2304 |
1020 |
0.0003 |
- |
1.2425 |
1030 |
0.0001 |
- |
1.2545 |
1040 |
0.0002 |
- |
1.2666 |
1050 |
0.0004 |
- |
1.2786 |
1060 |
0.0001 |
- |
1.2907 |
1070 |
0.0002 |
- |
1.3028 |
1080 |
0.0001 |
- |
1.3148 |
1090 |
0.0002 |
- |
1.3269 |
1100 |
0.0001 |
- |
1.3390 |
1110 |
0.0002 |
- |
1.3510 |
1120 |
0.0003 |
- |
1.3631 |
1130 |
0.0001 |
- |
1.3752 |
1140 |
0.0001 |
- |
1.3872 |
1150 |
0.0001 |
- |
1.3993 |
1160 |
0.0002 |
- |
1.4113 |
1170 |
0.0001 |
- |
1.4234 |
1180 |
0.0005 |
- |
1.4355 |
1190 |
0.0002 |
- |
1.4475 |
1200 |
0.0002 |
- |
1.4596 |
1210 |
0.0002 |
- |
1.4717 |
1220 |
0.0001 |
- |
1.4837 |
1230 |
0.0001 |
- |
1.4958 |
1240 |
0.0001 |
- |
1.5078 |
1250 |
0.0001 |
- |
1.5199 |
1260 |
0.001 |
- |
1.5320 |
1270 |
0.0001 |
- |
1.5440 |
1280 |
0.0003 |
- |
1.5561 |
1290 |
0.0001 |
- |
1.5682 |
1300 |
0.0002 |
- |
1.5802 |
1310 |
0.0005 |
- |
1.5923 |
1320 |
0.0002 |
- |
1.6043 |
1330 |
0.0001 |
- |
1.6164 |
1340 |
0.0004 |
- |
1.6285 |
1350 |
0.0002 |
- |
1.6405 |
1360 |
0.0001 |
- |
1.6526 |
1370 |
0.0004 |
- |
1.6647 |
1380 |
0.0003 |
- |
1.6767 |
1390 |
0.0002 |
- |
1.6888 |
1400 |
0.0001 |
- |
1.7008 |
1410 |
0.0008 |
- |
1.7129 |
1420 |
0.0003 |
- |
1.7250 |
1430 |
0.0005 |
- |
1.7370 |
1440 |
0.0001 |
- |
1.7491 |
1450 |
0.0001 |
- |
1.7612 |
1460 |
0.0001 |
- |
1.7732 |
1470 |
0.0007 |
- |
1.7853 |
1480 |
0.0001 |
- |
1.7973 |
1490 |
0.0002 |
- |
1.8094 |
1500 |
0.0001 |
- |
1.8215 |
1510 |
0.001 |
- |
1.8335 |
1520 |
0.0002 |
- |
1.8456 |
1530 |
0.0003 |
- |
1.8577 |
1540 |
0.0004 |
- |
1.8697 |
1550 |
0.0005 |
- |
1.8818 |
1560 |
0.0001 |
- |
1.8938 |
1570 |
0.0006 |
- |
1.9059 |
1580 |
0.0005 |
- |
1.9180 |
1590 |
0.0002 |
- |
1.9300 |
1600 |
0.0002 |
- |
1.9421 |
1610 |
0.0001 |
- |
1.9542 |
1620 |
0.0003 |
- |
1.9662 |
1630 |
0.0005 |
- |
1.9783 |
1640 |
0.0007 |
- |
1.9903 |
1650 |
0.0001 |
- |
2.0 |
1658 |
- |
0.0186 |
2.0024 |
1660 |
0.0 |
- |
2.0145 |
1670 |
0.0001 |
- |
2.0265 |
1680 |
0.0002 |
- |
2.0386 |
1690 |
0.0001 |
- |
2.0507 |
1700 |
0.0002 |
- |
2.0627 |
1710 |
0.0001 |
- |
2.0748 |
1720 |
0.0001 |
- |
2.0869 |
1730 |
0.0002 |
- |
2.0989 |
1740 |
0.0001 |
- |
2.1110 |
1750 |
0.0002 |
- |
2.1230 |
1760 |
0.0001 |
- |
2.1351 |
1770 |
0.0003 |
- |
2.1472 |
1780 |
0.0006 |
- |
2.1592 |
1790 |
0.0001 |
- |
2.1713 |
1800 |
0.0002 |
- |
2.1834 |
1810 |
0.0002 |
- |
2.1954 |
1820 |
0.0001 |
- |
2.2075 |
1830 |
0.0 |
- |
2.2195 |
1840 |
0.0001 |
- |
2.2316 |
1850 |
0.0002 |
- |
2.2437 |
1860 |
0.0004 |
- |
2.2557 |
1870 |
0.0003 |
- |
2.2678 |
1880 |
0.0002 |
- |
2.2799 |
1890 |
0.0002 |
- |
2.2919 |
1900 |
0.0004 |
- |
2.3040 |
1910 |
0.0002 |
- |
2.3160 |
1920 |
0.0001 |
- |
2.3281 |
1930 |
0.0 |
- |
2.3402 |
1940 |
0.0002 |
- |
2.3522 |
1950 |
0.0001 |
- |
2.3643 |
1960 |
0.0 |
- |
2.3764 |
1970 |
0.0003 |
- |
2.3884 |
1980 |
0.0002 |
- |
2.4005 |
1990 |
0.0001 |
- |
2.4125 |
2000 |
0.0003 |
- |
2.4246 |
2010 |
0.0003 |
- |
2.4367 |
2020 |
0.0002 |
- |
2.4487 |
2030 |
0.0002 |
- |
2.4608 |
2040 |
0.0002 |
- |
2.4729 |
2050 |
0.0001 |
- |
2.4849 |
2060 |
0.0001 |
- |
2.4970 |
2070 |
0.0002 |
- |
2.5090 |
2080 |
0.0 |
- |
2.5211 |
2090 |
0.0002 |
- |
2.5332 |
2100 |
0.0004 |
- |
2.5452 |
2110 |
0.0005 |
- |
2.5573 |
2120 |
0.0003 |
- |
2.5694 |
2130 |
0.0001 |
- |
2.5814 |
2140 |
0.0002 |
- |
2.5935 |
2150 |
0.0008 |
- |
2.6055 |
2160 |
0.0002 |
- |
2.6176 |
2170 |
0.0003 |
- |
2.6297 |
2180 |
0.0001 |
- |
2.6417 |
2190 |
0.0002 |
- |
2.6538 |
2200 |
0.0001 |
- |
2.6659 |
2210 |
0.0001 |
- |
2.6779 |
2220 |
0.0 |
- |
2.6900 |
2230 |
0.0002 |
- |
2.7021 |
2240 |
0.0 |
- |
2.7141 |
2250 |
0.0001 |
- |
2.7262 |
2260 |
0.0001 |
- |
2.7382 |
2270 |
0.0003 |
- |
2.7503 |
2280 |
0.0001 |
- |
2.7624 |
2290 |
0.0003 |
- |
2.7744 |
2300 |
0.0001 |
- |
2.7865 |
2310 |
0.0002 |
- |
2.7986 |
2320 |
0.0001 |
- |
2.8106 |
2330 |
0.0001 |
- |
2.8227 |
2340 |
0.0001 |
- |
2.8347 |
2350 |
0.0001 |
- |
2.8468 |
2360 |
0.0002 |
- |
2.8589 |
2370 |
0.0001 |
- |
2.8709 |
2380 |
0.0001 |
- |
2.8830 |
2390 |
0.0 |
- |
2.8951 |
2400 |
0.0 |
- |
2.9071 |
2410 |
0.0 |
- |
2.9192 |
2420 |
0.0001 |
- |
2.9312 |
2430 |
0.0002 |
- |
2.9433 |
2440 |
0.0001 |
- |
2.9554 |
2450 |
0.0001 |
- |
2.9674 |
2460 |
0.0001 |
- |
2.9795 |
2470 |
0.0003 |
- |
2.9916 |
2480 |
0.0001 |
- |
3.0 |
2487 |
- |
0.0176 |
3.0036 |
2490 |
0.0001 |
- |
3.0157 |
2500 |
0.0 |
- |
3.0277 |
2510 |
0.0002 |
- |
3.0398 |
2520 |
0.0 |
- |
3.0519 |
2530 |
0.0002 |
- |
3.0639 |
2540 |
0.0002 |
- |
3.0760 |
2550 |
0.0 |
- |
3.0881 |
2560 |
0.0001 |
- |
3.1001 |
2570 |
0.0001 |
- |
3.1122 |
2580 |
0.0003 |
- |
3.1242 |
2590 |
0.0003 |
- |
3.1363 |
2600 |
0.0001 |
- |
3.1484 |
2610 |
0.0 |
- |
3.1604 |
2620 |
0.0002 |
- |
3.1725 |
2630 |
0.0001 |
- |
3.1846 |
2640 |
0.0001 |
- |
3.1966 |
2650 |
0.0001 |
- |
3.2087 |
2660 |
0.0003 |
- |
3.2207 |
2670 |
0.0001 |
- |
3.2328 |
2680 |
0.0001 |
- |
3.2449 |
2690 |
0.0001 |
- |
3.2569 |
2700 |
0.0001 |
- |
3.2690 |
2710 |
0.0002 |
- |
3.2811 |
2720 |
0.0001 |
- |
3.2931 |
2730 |
0.0005 |
- |
3.3052 |
2740 |
0.0 |
- |
3.3172 |
2750 |
0.0001 |
- |
3.3293 |
2760 |
0.0002 |
- |
3.3414 |
2770 |
0.0003 |
- |
3.3534 |
2780 |
0.0001 |
- |
3.3655 |
2790 |
0.0001 |
- |
3.3776 |
2800 |
0.0001 |
- |
3.3896 |
2810 |
0.0004 |
- |
3.4017 |
2820 |
0.0001 |
- |
3.4138 |
2830 |
0.0002 |
- |
3.4258 |
2840 |
0.0001 |
- |
3.4379 |
2850 |
0.0003 |
- |
3.4499 |
2860 |
0.0001 |
- |
3.4620 |
2870 |
0.0002 |
- |
3.4741 |
2880 |
0.0001 |
- |
3.4861 |
2890 |
0.0003 |
- |
3.4982 |
2900 |
0.0003 |
- |
3.5103 |
2910 |
0.0001 |
- |
3.5223 |
2920 |
0.0 |
- |
3.5344 |
2930 |
0.0 |
- |
3.5464 |
2940 |
0.0001 |
- |
3.5585 |
2950 |
0.0002 |
- |
3.5706 |
2960 |
0.0002 |
- |
3.5826 |
2970 |
0.0001 |
- |
3.5947 |
2980 |
0.0 |
- |
3.6068 |
2990 |
0.0001 |
- |
3.6188 |
3000 |
0.0003 |
- |
3.6309 |
3010 |
0.0001 |
- |
3.6429 |
3020 |
0.0 |
- |
3.6550 |
3030 |
0.0002 |
- |
3.6671 |
3040 |
0.0003 |
- |
3.6791 |
3050 |
0.0005 |
- |
3.6912 |
3060 |
0.0001 |
- |
3.7033 |
3070 |
0.0 |
- |
3.7153 |
3080 |
0.0001 |
- |
3.7274 |
3090 |
0.0002 |
- |
3.7394 |
3100 |
0.0001 |
- |
3.7515 |
3110 |
0.0001 |
- |
3.7636 |
3120 |
0.0002 |
- |
3.7756 |
3130 |
0.0001 |
- |
3.7877 |
3140 |
0.0 |
- |
3.7998 |
3150 |
0.0001 |
- |
3.8118 |
3160 |
0.0001 |
- |
3.8239 |
3170 |
0.0001 |
- |
3.8359 |
3180 |
0.0001 |
- |
3.8480 |
3190 |
0.0005 |
- |
3.8601 |
3200 |
0.0 |
- |
3.8721 |
3210 |
0.0001 |
- |
3.8842 |
3220 |
0.0001 |
- |
3.8963 |
3230 |
0.0001 |
- |
3.9083 |
3240 |
0.0001 |
- |
3.9204 |
3250 |
0.0001 |
- |
3.9324 |
3260 |
0.0 |
- |
3.9445 |
3270 |
0.0001 |
- |
3.9566 |
3280 |
0.0001 |
- |
3.9686 |
3290 |
0.0002 |
- |
3.9807 |
3300 |
0.0002 |
- |
3.9928 |
3310 |
0.0001 |
- |
4.0 |
3316 |
- |
0.0187 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- SetFit: 1.0.3
- Sentence Transformers: 3.0.1
- Transformers: 4.37.0
- PyTorch: 2.3.0+cu121
- Datasets: 2.20.0
- Tokenizers: 0.15.2
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}