autoevaluator
HF staff
Add evaluation results on the de-en config and validation split of wmt19
cd03566
language: | |
- en | |
- de | |
tags: | |
- translation | |
- wmt19 | |
license: apache-2.0 | |
datasets: | |
- wmt19 | |
metrics: | |
- bleu | |
thumbnail: https://huggingface.co/front/thumbnails/facebook.png | |
model-index: | |
- name: facebook/wmt19-en-de | |
results: | |
- task: | |
type: translation | |
name: Translation | |
dataset: | |
name: wmt19 | |
type: wmt19 | |
config: de-en | |
split: validation | |
metrics: | |
- name: BLEU | |
type: bleu | |
value: 47.3619 | |
verified: true | |
- name: loss | |
type: loss | |
value: 7.284519672393799 | |
verified: true | |
- name: gen_len | |
type: gen_len | |
value: 29.2205 | |
verified: true | |
# FSMT | |
## Model description | |
This is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for en-de. | |
For more details, please see, [Facebook FAIR's WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616). | |
The abbreviation FSMT stands for FairSeqMachineTranslation | |
All four models are available: | |
* [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru) | |
* [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en) | |
* [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de) | |
* [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en) | |
## Intended uses & limitations | |
#### How to use | |
```python | |
from transformers import FSMTForConditionalGeneration, FSMTTokenizer | |
mname = "facebook/wmt19-en-de" | |
tokenizer = FSMTTokenizer.from_pretrained(mname) | |
model = FSMTForConditionalGeneration.from_pretrained(mname) | |
input = "Machine learning is great, isn't it?" | |
input_ids = tokenizer.encode(input, return_tensors="pt") | |
outputs = model.generate(input_ids) | |
decoded = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
print(decoded) # Maschinelles Lernen ist großartig, oder? | |
``` | |
#### Limitations and bias | |
- The original (and this ported model) doesn't seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981) | |
## Training data | |
Pretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616). | |
## Eval results | |
pair | fairseq | transformers | |
-------|---------|---------- | |
en-de | [43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862) | 42.83 | |
The score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn't support: | |
- model ensemble, therefore the best performing checkpoint was ported (``model4.pt``). | |
- re-ranking | |
The score was calculated using this code: | |
```bash | |
git clone https://github.com/huggingface/transformers | |
cd transformers | |
export PAIR=en-de | |
export DATA_DIR=data/$PAIR | |
export SAVE_DIR=data/$PAIR | |
export BS=8 | |
export NUM_BEAMS=15 | |
mkdir -p $DATA_DIR | |
sacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source | |
sacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target | |
echo $PAIR | |
PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS | |
``` | |
note: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`. | |
## Data Sources | |
- [training, etc.](http://www.statmt.org/wmt19/) | |
- [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561) | |
### BibTeX entry and citation info | |
```bibtex | |
@inproceedings{..., | |
year={2020}, | |
title={Facebook FAIR's WMT19 News Translation Task Submission}, | |
author={Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}, | |
booktitle={Proc. of WMT}, | |
} | |
``` | |
## TODO | |
- port model ensemble (fairseq uses 4 model checkpoints) | |