Upload 2 files
#16
by
oyemade
- opened
- handler.py +31 -0
- requirements.txt +3 -0
handler.py
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# handler.py
|
2 |
+
|
3 |
+
from typing import Dict, Any
|
4 |
+
from transformers import pipeline
|
5 |
+
|
6 |
+
class EndpointHandler:
|
7 |
+
def __init__(self, model_path: str = ""):
|
8 |
+
"""
|
9 |
+
Load the MMS-TTS pipeline once at startup.
|
10 |
+
transformers>=4.33.0 is required for MMS-TTS support.
|
11 |
+
"""
|
12 |
+
self.tts = pipeline(
|
13 |
+
task="text-to-speech",
|
14 |
+
model=model_path,
|
15 |
+
device=0,
|
16 |
+
# device_map="auto" # optional: to leverage GPU if available
|
17 |
+
)
|
18 |
+
|
19 |
+
def __call__(self, data: Dict[str, Any]) -> Dict[str, Any]:
|
20 |
+
"""
|
21 |
+
data: {"inputs": "<text to synthesize>"}
|
22 |
+
Returns: {"wav": <binary audio>, "sampling_rate": <int>}
|
23 |
+
"""
|
24 |
+
text = data.get("inputs", "")
|
25 |
+
# Run TTS; returns a dict with "wav" and "sampling_rate"
|
26 |
+
result = self.tts(text)
|
27 |
+
audio = result["audio"]
|
28 |
+
return {
|
29 |
+
"array": audio.T.tolist(), # transpose if needed to fix ushort format:contentReference[oaicite:6]{index=6}
|
30 |
+
"sampling_rate": result["sampling_rate"],
|
31 |
+
}
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
transformers>=4.33.0 # MMS-TTS support
|
2 |
+
torch # if not already included
|
3 |
+
# any other libs you need
|