AMR-Fact Summarization Consistencies Checking Indonesia
Collection
7 items
•
Updated
indoT5-AMRToTextGenerator-V1.1
Model ini adalah versi fine-tuned tugas generasi teks dari Abstract Meaning Representation (AMR) dalam Bahasa Indonesia. Proses fine-tuning dilakukan dengan menggunakan Dataset Augemnted dari AMRParser abdiharyadi/taufiq-indo-amr-generation-gold-v1.1-uncased terhadap XSum Indonesia.
Bahasa Utama: Indonesia
from transformers import T5TokenizerFast, AutoModelForSeq2SeqLM
import torch
model_path = "fabhiansan/indoT5-AMRToTextGenerator"
tokenizer_path = "fabhiansan/indoT5-AMRToTextGenerator"
tokenizer = T5TokenizerFast.from_pretrained(tokenizer_path)
model = AutoModelForSeq2SeqLM.from_pretrained(model_path)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
model.eval() # Set model ke mode evaluasi
contoh_amr = """
(w / want-01
:ARG0 (b / boy)
:ARG1 (g / go-01
:ARG0 b
:ARG2 (c / cinema)))
"""
prefix = "translate graph to indonesian: "
input_text = prefix + contoh_amr.strip() # Hilangkan spasi berlebih di awal/akhir
inputs = tokenizer(
input_text,
return_tensors='pt',
padding=True,
truncation=True,
max_length=512
)
inputs = {k: v.to(device) for k, v in inputs.items()}
print("Melakukan generasi teks...")
with torch.no_grad(): # Tidak perlu menghitung gradien saat inferensi
outputs = model.generate(
input_ids=inputs['input_ids'],
attention_mask=inputs['attention_mask'],
max_length=512, # Max length untuk output yang digenerasi
num_beams=5, # Contoh parameter beam search
repetition_penalty=2.5,
length_penalty=1.0,
early_stopping=True
)
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
print("\nInput AMR:")
print(contoh_amr)
print("\nGenerated Indonesian Text:")
print(generated_text)
Penelitian terkait (Daryanto dan Khodra, 2022):
@INPROCEEDINGS{9932960,
author={Daryanto, Taufiq Husada and Khodra, Masayu Leylia},
booktitle={2022 9th International Conference on Advanced Informatics: Concepts, Theory and Applications (ICAICTA)},
title={Indonesian AMR-to-Text Generation by Language Model Fine-tuning},
year={2022},
volume={},
number={},
pages={1-6},
doi={10.1109/ICAICTA56449.2022.9932960}
}