metadata
library_name: transformers
license: apache-2.0
base_model: ntu-spml/distilhubert
tags:
- generated_from_trainer
datasets:
- marsyas/gtzan
metrics:
- accuracy
model-index:
- name: distilhubert-finetuned-hyperparam-gtzan
results:
- task:
name: Audio Classification
type: audio-classification
dataset:
name: GTZAN
type: marsyas/gtzan
config: all
split: train
args: all
metrics:
- name: Accuracy
type: accuracy
value: 0.86
distilhubert-finetuned-hyperparam-gtzan
This model is a fine-tuned version of ntu-spml/distilhubert on the GTZAN dataset. It achieves the following results on the evaluation set:
- Loss: 1.2045
- Accuracy: 0.86
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 30
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.7469 | 1.0 | 113 | 1.3737 | 0.57 |
0.7973 | 2.0 | 226 | 1.5247 | 0.57 |
0.6831 | 3.0 | 339 | 0.8961 | 0.74 |
0.4573 | 4.0 | 452 | 0.8638 | 0.76 |
0.1874 | 5.0 | 565 | 0.7839 | 0.81 |
0.0829 | 6.0 | 678 | 1.0174 | 0.79 |
0.0306 | 7.0 | 791 | 0.9393 | 0.81 |
0.004 | 8.0 | 904 | 0.9737 | 0.85 |
0.1209 | 9.0 | 1017 | 1.0625 | 0.8 |
0.0237 | 10.0 | 1130 | 1.3653 | 0.8 |
0.0164 | 11.0 | 1243 | 1.3065 | 0.81 |
0.0007 | 12.0 | 1356 | 1.1272 | 0.83 |
0.0004 | 13.0 | 1469 | 1.3226 | 0.83 |
0.0001 | 14.0 | 1582 | 1.6092 | 0.82 |
0.0001 | 15.0 | 1695 | 1.2045 | 0.86 |
0.0002 | 16.0 | 1808 | 1.1312 | 0.85 |
0.0003 | 17.0 | 1921 | 1.0911 | 0.86 |
0.0 | 18.0 | 2034 | 1.1983 | 0.84 |
0.0001 | 19.0 | 2147 | 1.1363 | 0.85 |
0.0 | 20.0 | 2260 | 1.2547 | 0.85 |
0.0002 | 21.0 | 2373 | 1.2394 | 0.84 |
0.0001 | 22.0 | 2486 | 1.5508 | 0.85 |
0.0 | 23.0 | 2599 | 1.2689 | 0.83 |
0.0 | 24.0 | 2712 | 1.2343 | 0.83 |
0.0003 | 25.0 | 2825 | 1.2313 | 0.81 |
0.0 | 26.0 | 2938 | 1.2217 | 0.83 |
0.0 | 27.0 | 3051 | 1.1596 | 0.84 |
0.0 | 28.0 | 3164 | 1.1081 | 0.85 |
0.0001 | 29.0 | 3277 | 1.1394 | 0.85 |
0.0 | 30.0 | 3390 | 1.1215 | 0.85 |
Framework versions
- Transformers 4.48.0.dev0
- Pytorch 2.6.0+cu126
- Datasets 3.2.0
- Tokenizers 0.21.0