metadata
library_name: transformers
license: mit
datasets:
- ethicalabs/Kurtis-E1-SFT
language:
- en
base_model: ethicalabs/Kurtis-E1.1-Qwen2.5-0.5B-Instruct
pipeline_tag: text-generation
tags:
- mlx
ethicalabs/Kurtis-E1.1-Qwen2.5-0.5B-Instruct-mlx-4Bit
The Model ethicalabs/Kurtis-E1.1-Qwen2.5-0.5B-Instruct-mlx-4Bit was converted to MLX format from ethicalabs/Kurtis-E1.1-Qwen2.5-0.5B-Instruct using mlx-lm version 0.22.1.
Use with mlx
pip install mlx-lm
from mlx_lm import load, generate
model, tokenizer = load("ethicalabs/Kurtis-E1.1-Qwen2.5-0.5B-Instruct-mlx-4Bit")
prompt="hello"
if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)