xlmr_nli_tuned_private

This model is a fine-tuned version of eryawww/xlmr_base_nlit on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6844
  • Accuracy: 0.8433
  • F1: 0.8435

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 200
  • eval_batch_size: 200
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
0.4381 1.0 408 0.4088 0.8430 0.8430
0.3566 2.0 816 0.4136 0.8444 0.8445
0.2708 3.0 1224 0.4617 0.8429 0.8431
0.2223 4.0 1632 0.4981 0.8407 0.8409
0.1757 5.0 2040 0.5354 0.8420 0.8422
0.145 6.0 2448 0.5947 0.8419 0.8421
0.1231 7.0 2856 0.6268 0.8413 0.8414
0.0917 8.0 3264 0.6813 0.8420 0.8422
0.0911 9.0 3672 0.6810 0.8422 0.8424
0.0884 10.0 4080 0.6844 0.8433 0.8435

Framework versions

  • Transformers 4.45.0
  • Pytorch 2.7.1+cu126
  • Datasets 3.6.0
  • Tokenizers 0.20.3
Downloads last month
14
Safetensors
Model size
435M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for eryawww/indonli-deberta-v3-large

Finetuned
(2)
this model