Ties merged COde MAth aNd Reasoning model
This is a merge of pre-trained language models created using mergekit.
Merge Details
This model is a revision of the ertghiu256/Qwen3-4b-tcomanr-merge-v2.2
This model aims to combine the reasoning, code, and math capabilities of Qwen3 4b 2507 reasoning by merging it with some other Qwen3 finetunes. This model reasoning is very long.
How to run
You can run this model by using multiple interface choices
Transformers
As the qwen team suggested to use
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "ertghiu256/Qwen3-4b-tcomanr-merge-v2.3"
# load the tokenizer and the model
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto"
)
# prepare the model input
prompt = "Give me a short introduction to large language model."
messages = [
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True,
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
# conduct text completion
generated_ids = model.generate(
**model_inputs,
max_new_tokens=32768
)
output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist()
# parsing thinking content
try:
# rindex finding 151668 (</think>)
index = len(output_ids) - output_ids[::-1].index(151668)
except ValueError:
index = 0
thinking_content = tokenizer.decode(output_ids[:index], skip_special_tokens=True).strip("\n")
content = tokenizer.decode(output_ids[index:], skip_special_tokens=True).strip("\n")
print("thinking content:", thinking_content) # no opening <think> tag
print("content:", content)
Vllm
Run this command
vllm serve ertghiu256/Qwen3-4b-tcomanr-merge-v2.3 --enable-reasoning --reasoning-parser deepseek_r1
Sglang
Run this command
python -m sglang.launch_server --model-path ertghiu256/Qwen3-4b-tcomanr-merge-v2.3 --reasoning-parser deepseek-r1
llama.cpp
Run this command
llama-server --hf-repo ertghiu256/Qwen3-4b-tcomanr-merge-v2.3
or
llama-cli --hf ertghiu256/Qwen3-4b-tcomanr-merge-v2.3
Ollama
View the model at ollama.com or Run this command
ollama run ertghiu256/Qwen3-4b-tcomanr-merge-v2.3:Q8_0
or for Q5_K_M quant
ollama run hf.co/ertghiu256/Qwen3-4b-tcomanr-merge-v2.3:Q5_K_M
or for IQ4_NL quant
ollama run hf.co/ertghiu256/Qwen3-4b-tcomanr-merge-v2.3:IQ4_NL
LM Studio
Search
ertghiu256/Qwen3-4b-tcomanr-merge-v2.3
in the lm studio model search list then download
Recomended parameters
temp: 0.6
num_ctx: ≥8192
top_p: 0.95
top_k: 10
Repeat Penalty: 1.1
Merge Method
This model was merged using the TIES merge method using Qwen/Qwen3-4B-Thinking-2507 as a base.
Models Merged
The following models were included in the merge:
- ertghiu256/qwen-3-4b-mixture-of-thought
- Tesslate/UIGEN-T3-4B-Preview-MAX
- ertghiu256/Qwen3-4B-Thinking-2507-Hermes-3
- ValiantLabs/Qwen3-4B-ShiningValiant3
- ertghiu256/qwen3-math-reasoner
- ValiantLabs/Qwen3-4B-Esper3
- Qwen/Qwen3-4b-Instruct-2507
- ertghiu256/qwen3-multi-reasoner
- janhq/Jan-v1-4B
- ertghiu256/qwen3-4b-code-reasoning
- ertghiu256/Qwen3-Hermes-4b
- GetSoloTech/Qwen3-Code-Reasoning-4B
- POLARIS-Project/Polaris-4B-Preview
- huihui-ai/Huihui-Qwen3-4B-Thinking-2507-abliterated
Configuration
The following YAML configuration was used to produce this model:
models:
- model: ertghiu256/qwen3-math-reasoner
parameters:
weight: 0.8
- model: ertghiu256/qwen3-4b-code-reasoning
parameters:
weight: 0.9
- model: ertghiu256/qwen-3-4b-mixture-of-thought
parameters:
weight: 1.0
- model: POLARIS-Project/Polaris-4B-Preview
parameters:
weight: 0.8
- model: ertghiu256/qwen3-multi-reasoner
parameters:
weight: 0.9
- model: ertghiu256/Qwen3-Hermes-4b
parameters:
weight: 0.7
- model: ValiantLabs/Qwen3-4B-Esper3
parameters:
weight: 0.75
- model: Tesslate/UIGEN-T3-4B-Preview-MAX
parameters:
weight: 1.0
- model: ValiantLabs/Qwen3-4B-ShiningValiant3
parameters:
weight: 0.6
density: 0.5
- model: huihui-ai/Huihui-Qwen3-4B-Thinking-2507-abliterated
parameters:
weight: 0.75
- model: Qwen/Qwen3-4B-Thinking-2507
parameters:
weight: 1.0
- model: Qwen/Qwen3-4b-Instruct-2507
parameters:
weight: 0.75
- model: GetSoloTech/Qwen3-Code-Reasoning-4B
parameters:
weight: 0.75
density: 0.55
- model: ertghiu256/Qwen3-4B-Thinking-2507-Hermes-3
parameters:
weight: 1.0
- model: janhq/Jan-v1-4B
parameters:
weight: 0.3
merge_method: ties
base_model: Qwen/Qwen3-4B-Thinking-2507
parameters:
normalize: true
int8_mask: true
lambda: 1.0
dtype: float16
- Downloads last month
- 378