See axolotl config
axolotl version: 0.4.1
adapter: lora
auto_resume_from_checkpoints: false
base_model: katuni4ka/tiny-random-olmo-hf
bf16: false
chat_template: llama3
dataset_prepared_path: null
dataset_processes: 6
datasets:
- data_files:
- 221da31169c149b4_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/221da31169c149b4_train_data.json
type:
field_instruction: article
field_output: highlights
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 3
eval_max_new_tokens: 128
eval_steps: 1000
eval_table_size: null
flash_attention: true
fp16: true
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: false
group_by_length: false
hub_model_id: error577/bc5fbfc9-f1e4-4387-aa26-0da42ee81a33
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 64
lora_dropout: 0.1
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: null
micro_batch_size: 8
mlflow_experiment_name: /tmp/221da31169c149b4_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 1000
sequence_len: 512
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.005
wandb_entity: null
wandb_mode: online
wandb_name: 2ccb6882-99f8-4efd-a1e6-16fa51e91956
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 2ccb6882-99f8-4efd-a1e6-16fa51e91956
warmup_steps: 30
weight_decay: 0.0
xformers_attention: null
bc5fbfc9-f1e4-4387-aa26-0da42ee81a33
This model is a fine-tuned version of katuni4ka/tiny-random-olmo-hf on the None dataset. It achieves the following results on the evaluation set:
- Loss: 10.6147
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 30
- num_epochs: 3
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
10.8267 | 0.0001 | 1 | 10.8318 |
10.6865 | 0.0516 | 1000 | 10.6904 |
10.6779 | 0.1032 | 2000 | 10.6735 |
10.6701 | 0.1548 | 3000 | 10.6622 |
10.6584 | 0.2064 | 4000 | 10.6574 |
10.6639 | 0.2580 | 5000 | 10.6540 |
10.6565 | 0.3096 | 6000 | 10.6512 |
10.6328 | 0.3612 | 7000 | 10.6494 |
10.6499 | 0.4128 | 8000 | 10.6472 |
10.6341 | 0.4643 | 9000 | 10.6411 |
10.6441 | 0.5159 | 10000 | 10.6368 |
10.6524 | 0.5675 | 11000 | 10.6335 |
10.6661 | 0.6191 | 12000 | 10.6324 |
10.634 | 0.6707 | 13000 | 10.6303 |
10.6418 | 0.7223 | 14000 | 10.6288 |
10.6284 | 0.7739 | 15000 | 10.6276 |
10.6361 | 0.8255 | 16000 | 10.6266 |
10.6471 | 0.8771 | 17000 | 10.6255 |
10.6367 | 0.9287 | 18000 | 10.6251 |
10.641 | 0.9803 | 19000 | 10.6236 |
10.6258 | 1.0319 | 20000 | 10.6232 |
10.6364 | 1.0835 | 21000 | 10.6237 |
10.642 | 1.1351 | 22000 | 10.6221 |
10.6405 | 1.1867 | 23000 | 10.6216 |
10.6022 | 1.2383 | 24000 | 10.6214 |
10.6063 | 1.2899 | 25000 | 10.6210 |
10.6538 | 1.3415 | 26000 | 10.6204 |
10.6155 | 1.3930 | 27000 | 10.6197 |
10.651 | 1.4446 | 28000 | 10.6196 |
10.649 | 1.4962 | 29000 | 10.6187 |
10.637 | 1.5478 | 30000 | 10.6186 |
10.6229 | 1.5994 | 31000 | 10.6185 |
10.6273 | 1.6510 | 32000 | 10.6180 |
10.6075 | 1.7026 | 33000 | 10.6178 |
10.62 | 1.7542 | 34000 | 10.6176 |
10.6506 | 1.8058 | 35000 | 10.6171 |
10.6336 | 1.8574 | 36000 | 10.6172 |
10.6363 | 1.9090 | 37000 | 10.6171 |
10.6311 | 1.9606 | 38000 | 10.6166 |
10.6164 | 2.0122 | 39000 | 10.6162 |
10.6309 | 2.0638 | 40000 | 10.6158 |
10.6464 | 2.1154 | 41000 | 10.6162 |
10.6402 | 2.1670 | 42000 | 10.6157 |
10.6167 | 2.2186 | 43000 | 10.6154 |
10.6317 | 2.2701 | 44000 | 10.6155 |
10.6009 | 2.3217 | 45000 | 10.6153 |
10.6353 | 2.3733 | 46000 | 10.6152 |
10.6209 | 2.4249 | 47000 | 10.6151 |
10.5978 | 2.4765 | 48000 | 10.6151 |
10.6234 | 2.5281 | 49000 | 10.6150 |
10.6156 | 2.5797 | 50000 | 10.6149 |
10.6199 | 2.6313 | 51000 | 10.6150 |
10.6364 | 2.6829 | 52000 | 10.6149 |
10.6253 | 2.7345 | 53000 | 10.6148 |
10.6177 | 2.7861 | 54000 | 10.6147 |
10.6132 | 2.8377 | 55000 | 10.6148 |
10.6297 | 2.8893 | 56000 | 10.6147 |
10.615 | 2.9409 | 57000 | 10.6147 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 3
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for error577/bc5fbfc9-f1e4-4387-aa26-0da42ee81a33
Base model
katuni4ka/tiny-random-olmo-hf