Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: katuni4ka/tiny-random-olmo-hf
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - fd1aa1a857af2b5b_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/fd1aa1a857af2b5b_train_data.json
  type:
    field_input: system_msg
    field_instruction: prompt_msg
    field_output: truth
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 5
eval_max_new_tokens: 128
eval_steps: 200
eval_table_size: null
flash_attention: true
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 32
gradient_checkpointing: true
group_by_length: true
hub_model_id: error577/b6c7e253-5d8f-4e33-aed6-a9e781737b17
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0003
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 128
lora_dropout: 0.15
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: cosine
micro_batch_size: 4
mlflow_experiment_name: /tmp/fd1aa1a857af2b5b_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 10
optimizer: adamw_torch_fused
output_dir: miner_id_24
pad_to_sequence_len: true
restore_best_weights: true
auto_resume_from_checkpoints: true
s2_attention: null
sample_packing: false
save_steps: 200
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.005
wandb_entity: null
wandb_mode: online
wandb_name: 17e50d10-bf6d-4181-9085-72485caf9329
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 17e50d10-bf6d-4181-9085-72485caf9329
warmup_steps: 10
weight_decay: 0.001
xformers_attention: null

b6c7e253-5d8f-4e33-aed6-a9e781737b17

This model is a fine-tuned version of katuni4ka/tiny-random-olmo-hf on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 9.6182

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 32
  • total_train_batch_size: 128
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss
10.8193 0.0005 1 10.8338
9.7722 0.0944 200 9.7763
9.7568 0.1888 400 9.7539
9.7028 0.2832 600 9.7060
9.6697 0.3776 800 9.6646
9.6569 0.4719 1000 9.6443
9.6613 1.1327 1200 9.6330
9.5697 1.3215 1400 9.6291
9.6892 1.5102 1600 9.6253
9.5148 1.6990 1800 9.6233
9.6646 1.8878 2000 9.6218
9.5204 2.0766 2200 9.6212
9.636 2.2654 2400 9.6206
9.575 2.4541 2600 9.6204
9.6332 2.6429 2800 9.6203
9.6241 2.8317 3000 9.6202
9.6232 6.0491 3200 9.6204
9.6231 6.4266 3400 9.6197
9.6291 6.8042 3600 9.6193
9.6054 7.1818 3800 9.6189
9.5257 7.5593 4000 9.6186
9.559 7.9369 4200 9.6185
9.6064 8.3144 4400 9.6184
9.6427 8.6920 4600 9.6183
9.6201 9.0696 4800 9.6183
9.6109 9.4471 5000 9.6182
9.6314 9.8247 5200 9.6182

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
3
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for error577/b6c7e253-5d8f-4e33-aed6-a9e781737b17

Adapter
(124)
this model