See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: katuni4ka/tiny-random-olmo-hf
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- fd1aa1a857af2b5b_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/fd1aa1a857af2b5b_train_data.json
type:
field_input: system_msg
field_instruction: prompt_msg
field_output: truth
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 5
eval_max_new_tokens: 128
eval_steps: 200
eval_table_size: null
flash_attention: true
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 32
gradient_checkpointing: true
group_by_length: true
hub_model_id: error577/b6c7e253-5d8f-4e33-aed6-a9e781737b17
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0003
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 128
lora_dropout: 0.15
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: cosine
micro_batch_size: 4
mlflow_experiment_name: /tmp/fd1aa1a857af2b5b_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 10
optimizer: adamw_torch_fused
output_dir: miner_id_24
pad_to_sequence_len: true
restore_best_weights: true
auto_resume_from_checkpoints: true
s2_attention: null
sample_packing: false
save_steps: 200
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.005
wandb_entity: null
wandb_mode: online
wandb_name: 17e50d10-bf6d-4181-9085-72485caf9329
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 17e50d10-bf6d-4181-9085-72485caf9329
warmup_steps: 10
weight_decay: 0.001
xformers_attention: null
b6c7e253-5d8f-4e33-aed6-a9e781737b17
This model is a fine-tuned version of katuni4ka/tiny-random-olmo-hf on the None dataset. It achieves the following results on the evaluation set:
- Loss: 9.6182
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 32
- total_train_batch_size: 128
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
10.8193 | 0.0005 | 1 | 10.8338 |
9.7722 | 0.0944 | 200 | 9.7763 |
9.7568 | 0.1888 | 400 | 9.7539 |
9.7028 | 0.2832 | 600 | 9.7060 |
9.6697 | 0.3776 | 800 | 9.6646 |
9.6569 | 0.4719 | 1000 | 9.6443 |
9.6613 | 1.1327 | 1200 | 9.6330 |
9.5697 | 1.3215 | 1400 | 9.6291 |
9.6892 | 1.5102 | 1600 | 9.6253 |
9.5148 | 1.6990 | 1800 | 9.6233 |
9.6646 | 1.8878 | 2000 | 9.6218 |
9.5204 | 2.0766 | 2200 | 9.6212 |
9.636 | 2.2654 | 2400 | 9.6206 |
9.575 | 2.4541 | 2600 | 9.6204 |
9.6332 | 2.6429 | 2800 | 9.6203 |
9.6241 | 2.8317 | 3000 | 9.6202 |
9.6232 | 6.0491 | 3200 | 9.6204 |
9.6231 | 6.4266 | 3400 | 9.6197 |
9.6291 | 6.8042 | 3600 | 9.6193 |
9.6054 | 7.1818 | 3800 | 9.6189 |
9.5257 | 7.5593 | 4000 | 9.6186 |
9.559 | 7.9369 | 4200 | 9.6185 |
9.6064 | 8.3144 | 4400 | 9.6184 |
9.6427 | 8.6920 | 4600 | 9.6183 |
9.6201 | 9.0696 | 4800 | 9.6183 |
9.6109 | 9.4471 | 5000 | 9.6182 |
9.6314 | 9.8247 | 5200 | 9.6182 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 3
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for error577/b6c7e253-5d8f-4e33-aed6-a9e781737b17
Base model
katuni4ka/tiny-random-olmo-hf