See axolotl config
axolotl version: 0.4.1
adapter: qlora
base_model: HuggingFaceH4/zephyr-7b-beta
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- d60bb88622216d48_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/d60bb88622216d48_train_data.json
type:
field_instruction: title
field_output: body
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 1
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: false
hub_model_id: error577/b4858ab1-fa33-4d03-bbf8-24158ea20074
hub_repo: null
hub_strategy: end
hub_token: null
learning_rate: 0.0001
load_in_4bit: true
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 64
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lr_scheduler: cosine
max_steps: 500
micro_batch_size: 2
mlflow_experiment_name: /tmp/d60bb88622216d48_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 20
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 1
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.002
wandb_entity: null
wandb_mode: online
wandb_name: f4d3b427-02c9-45b2-af1a-2d060051a3e9
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: f4d3b427-02c9-45b2-af1a-2d060051a3e9
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
b4858ab1-fa33-4d03-bbf8-24158ea20074
This model is a fine-tuned version of HuggingFaceH4/zephyr-7b-beta on the None dataset. It achieves the following results on the evaluation set:
- Loss: 2.3041
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 500
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
10.3685 | 0.0001 | 1 | 2.4300 |
9.3977 | 0.0023 | 25 | 2.3389 |
9.9457 | 0.0046 | 50 | 2.3296 |
9.9118 | 0.0069 | 75 | 2.3246 |
9.7794 | 0.0092 | 100 | 2.3225 |
9.5919 | 0.0115 | 125 | 2.3199 |
9.5492 | 0.0138 | 150 | 2.3179 |
9.4144 | 0.0161 | 175 | 2.3169 |
10.2476 | 0.0184 | 200 | 2.3149 |
9.3078 | 0.0208 | 225 | 2.3130 |
9.6618 | 0.0231 | 250 | 2.3112 |
9.01 | 0.0254 | 275 | 2.3107 |
9.1366 | 0.0277 | 300 | 2.3084 |
9.4253 | 0.0300 | 325 | 2.3077 |
9.5503 | 0.0323 | 350 | 2.3070 |
9.2927 | 0.0346 | 375 | 2.3056 |
9.6795 | 0.0369 | 400 | 2.3049 |
9.7989 | 0.0392 | 425 | 2.3045 |
9.3685 | 0.0415 | 450 | 2.3042 |
8.9892 | 0.0438 | 475 | 2.3042 |
7.9958 | 0.0461 | 500 | 2.3041 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 8
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
HF Inference API was unable to determine this model’s pipeline type.
Model tree for error577/b4858ab1-fa33-4d03-bbf8-24158ea20074
Base model
mistralai/Mistral-7B-v0.1
Finetuned
HuggingFaceH4/zephyr-7b-beta