Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: qlora
base_model: HuggingFaceH4/zephyr-7b-beta
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - d60bb88622216d48_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/d60bb88622216d48_train_data.json
  type:
    field_instruction: title
    field_output: body
    format: '{instruction}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 1
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: false
hub_model_id: error577/b4858ab1-fa33-4d03-bbf8-24158ea20074
hub_repo: null
hub_strategy: end
hub_token: null
learning_rate: 0.0001
load_in_4bit: true
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 64
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lr_scheduler: cosine
max_steps: 500
micro_batch_size: 2
mlflow_experiment_name: /tmp/d60bb88622216d48_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 20
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 1
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.002
wandb_entity: null
wandb_mode: online
wandb_name: f4d3b427-02c9-45b2-af1a-2d060051a3e9
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: f4d3b427-02c9-45b2-af1a-2d060051a3e9
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null

b4858ab1-fa33-4d03-bbf8-24158ea20074

This model is a fine-tuned version of HuggingFaceH4/zephyr-7b-beta on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.3041

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 500

Training results

Training Loss Epoch Step Validation Loss
10.3685 0.0001 1 2.4300
9.3977 0.0023 25 2.3389
9.9457 0.0046 50 2.3296
9.9118 0.0069 75 2.3246
9.7794 0.0092 100 2.3225
9.5919 0.0115 125 2.3199
9.5492 0.0138 150 2.3179
9.4144 0.0161 175 2.3169
10.2476 0.0184 200 2.3149
9.3078 0.0208 225 2.3130
9.6618 0.0231 250 2.3112
9.01 0.0254 275 2.3107
9.1366 0.0277 300 2.3084
9.4253 0.0300 325 2.3077
9.5503 0.0323 350 2.3070
9.2927 0.0346 375 2.3056
9.6795 0.0369 400 2.3049
9.7989 0.0392 425 2.3045
9.3685 0.0415 450 2.3042
8.9892 0.0438 475 2.3042
7.9958 0.0461 500 2.3041

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
8
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and HF Inference API was unable to determine this model’s pipeline type.

Model tree for error577/b4858ab1-fa33-4d03-bbf8-24158ea20074

Adapter
(437)
this model