metadata
library_name: peft
base_model: katuni4ka/tiny-random-dbrx
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 8422d6eb-7a82-43f3-92d5-4c4d9c32801a
results: []
See axolotl config
axolotl version: 0.4.1
adapter: lora
auto_resume_from_checkpoints: false
base_model: katuni4ka/tiny-random-dbrx
bf16: auto
chat_template: llama3
dataset_prepared_path: null
dataset_processes:
datasets:
- data_files:
- 1b5f3f0e9699035e_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/1b5f3f0e9699035e_train_data.json
type:
field_input: document_title
field_instruction: question
field_output: answer
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 3
eval_max_new_tokens: 128
eval_steps: 1000
eval_table_size: null
evals_per_epoch: null
flash_attention: true
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: true
group_by_length: false
hub_model_id: error577/8422d6eb-7a82-43f3-92d5-4c4d9c32801a
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 64
lora_dropout: 0.1
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: null
micro_batch_size: 8
mlflow_experiment_name: /tmp/1b5f3f0e9699035e_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 10
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 1000
sequence_len: 256
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: e727ff45-4472-4587-b6f8-7d7f2f6b77e8
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: e727ff45-4472-4587-b6f8-7d7f2f6b77e8
warmup_steps: 30
weight_decay: 0.0
xformers_attention: null
8422d6eb-7a82-43f3-92d5-4c4d9c32801a
This model is a fine-tuned version of katuni4ka/tiny-random-dbrx on the None dataset. It achieves the following results on the evaluation set:
- Loss: 11.5
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 30
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
23.0 | 0.0006 | 1 | 11.5 |
23.0 | 0.6002 | 1000 | 11.5 |
23.0 | 1.2005 | 2000 | 11.5 |
23.0 | 1.8007 | 3000 | 11.5 |
23.0 | 2.4010 | 4000 | 11.5 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1