See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: NousResearch/CodeLlama-7b-hf
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 45fb2d361254b178_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/45fb2d361254b178_train_data.json
type:
field_input: counter_longer
field_instruction: counter_statement
field_output: question
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 16
gradient_checkpointing: false
group_by_length: false
hub_model_id: error577/58b9523a-8576-4309-80c7-060f2d6bf699
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: true
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 4
lora_target_linear: true
lr_scheduler: cosine
max_steps: 20
micro_batch_size: 1
mlflow_experiment_name: /tmp/45fb2d361254b178_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 4
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 256
special_tokens:
pad_token: </s>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 6344f2fc-fa2b-4848-99cc-8281347a9bf0
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 6344f2fc-fa2b-4848-99cc-8281347a9bf0
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
58b9523a-8576-4309-80c7-060f2d6bf699
This model is a fine-tuned version of NousResearch/CodeLlama-7b-hf on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.3307
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 20
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
43.4533 | 0.0015 | 1 | 2.6565 |
39.2663 | 0.0030 | 2 | 2.6556 |
39.5743 | 0.0059 | 4 | 2.6245 |
37.8648 | 0.0089 | 6 | 2.4578 |
36.6476 | 0.0119 | 8 | 1.9450 |
23.4278 | 0.0148 | 10 | 1.1998 |
11.9862 | 0.0178 | 12 | 0.5601 |
4.9234 | 0.0208 | 14 | 0.3981 |
9.4431 | 0.0237 | 16 | 0.3685 |
1.5801 | 0.0267 | 18 | 0.3404 |
5.968 | 0.0297 | 20 | 0.3307 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 26
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
HF Inference API was unable to determine this model’s pipeline type.
Model tree for error577/58b9523a-8576-4309-80c7-060f2d6bf699
Base model
NousResearch/CodeLlama-7b-hf