metadata
license: apache-2.0
datasets:
- OpenAssistant/oasst1
- EleutherAI/pile
language:
- en
- es
- ar
- fr
- fa
metrics:
- accuracy
- bleu
pipeline_tag: text-generation
tags:
- code
this model uses Task classification and the conversation is between USER and Answer or AI
NOTE β οΈ
THE JAX/FLAX version of model is available both for training and usage
Using Model in Huggingface Transformers
Examples π
<\s><|prompter|> TEXT <\s><|ai|>
For Byte by Byte Generation, You can use this code
# It's recommended to use PipeLine
# Make Sure that you have sentence piece,bits and bytes and accelerate installed
from transformers import LlamaTokenizer, LlamaForCausalLM, pipeline, GenerationConfig
import torch
from IPython.display import clear_output
import textwrap
from typing import List, Optional
import re
import base64
tokenizer = LlamaTokenizer.from_pretrained("erfanzar/LGeM-7B-MT")
model = LlamaForCausalLM.from_pretrained(
'erfanzar/LGeM-7B-MT',
load_in_8bit=True,
device_map='auto',
torch_dtype=torch.float16
)
def generator(input_text,pipe_line,max_number=256,do_print=False ,args_a=False):
verify_text = lambda txt : '\n'.join([textwrap.fill(txt, width=140) for txt in txt.split('\n')])
orginal_text = input_text
if not input_text.startswith(f'{task}: USER:') and args_a:
input_text = f'<\s><|prompter|> {input_text}<\s><|ai|>'
for i in range(max_number):
exac = input_text
with torch.no_grad():
output = pipe_line(input_text)
input_text = output[0]['generated_text']
if do_print:
clear_output(wait=True)
print(verify_text(input_text))
if input_text.endswith('<\s>') and i>6 or exac == input_text or input_text.endswith('<|prompter|>') and i>6:
break
yield verify_text(input_text)
And Use just like
pipe_line = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
temperature=0.8,
top_p=0.95,
max_new_tokens=4,
output_scores=True
)
or Just Simply Open GOOGLE COLAB ππ
Generate Method to get res Text by Text
def generate(model_,input_ids_,tokeinzer_,max_length:int=256,temperature :float= 1,eos_token_id:int=2):
with torch.no_grad():
before_start = len(input_ids_[0])+1
for _ in range(max_length):
out = model_(
input_ids=input_ids_,
return_dict=True,
)
opa = torch.nn.functional.softmax(out.logits[:,-1,:]/temperature)
Camila = torch.multinomial(opa,1)
input_ids_ = torch.cat([input_ids_,Camila],-1)
clear_output(wait=True)
print(f"\r{tokeinzer_.decode(input_ids_[0],skip_special_tokens=True)[before_start:]}",end='')
if Camila[0].item() == eos_token_id:
break
yield tokeinzer_.decode(Camila[0],skip_special_tokens=True)
return f"{tokeinzer_.decode(input_ids_[0],skip_special_tokens=True)[before_start:]}"
Result
import socket
import time
def check_internet_connection():
try:
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.connect(("www.google.com", 80))
print("Internet connection is active.")
except:
print("Internet connection is not active.")
if __name__ == "__main__":
check_internet_connection()
Using Model in OST
LGeM π
what is LGeM, LGeM is a CausalLM Model that is trained on self instruct data (Alpaca data) and for initialization of the first train of the main model (weights are available) I used pre weights from Alpaca LoRA (open source)
it's Decoder Only
built-in Pytorch and Jax
you can simply import models like (In EasyDeL or OST Library)
# Pytorch
from modules import LGeMForCausalLM
# Jax
from modules import FlaxLGeMForCausalLM
- and Training code is available at jax_train.py (check source)
- training parameters
- learning rate 5e-5
- Optimizer LION
- batch 32
- TPU POD
- Train Time 50 hours
- budget 500 $
python3 LGeM-train.py